user manual

PCO.python

4

excelitas.com eXCQ I I't a S®

pco.oython

Excelitas PCO GmbH asks you to carefully read and follow the instructions in this document.
For any questions or comments, please feel free to contact us at any time.

address:

pco:

mail:

web:

pco.python user manual 2.4.1
Released June 2025
©Copyright Excelitas PCO GmbH

onolel

Excelitas PCO GmbH
Donaupark 11
93309 Kelheim, Germany

(+49) 9441-2005-0
(+1) 866-662-6653
(+86) 0512-6763-4643

pco@excelitas.com

www.excelitas.com/pco

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/ or send a letter to Creative

Commons, PO Box 1866, Mountain View, CA 94042, USA.

pco.python user manual 2.4.1 pco.

mailto:pco@excelitas.com
https://www.excelitas.com/pco
http://creativecommons.org/licenses/by-nd/4.0/

pco.oython

Contents

1 General 5
1.1 Installation L e 5
1.2 BasicUsage e e 6
1.3 RecorderModes e 6
1.4 Image Formats e 7
1.5 Eventand ErrorLogging o e 8

2 API Documentation 9
21 Methods e e e e e 10

210 Nt e e e 10
212 eXit L e e 11
213 cClose . .. e e e 11
2.1.4 default_configuration 11
2.1.5 configureHWIO_1_exposureTrigger o i v i i i ittt et e 12
2.1.6 configureHWIO_2_acquireEnable. 12
2.1.7 configureHWIO_3_statusBusy 13
2.1.8 configureHWIO_4_statusEXpos it e e 14
2.1.9 configure_auto_exposure e e e e e e e e 15
2.1.10 auto_EXPOSUrE_0ON o i e e e e e e e e e e e e e e e 16
2.1.11 auto_exposure_off L e e e e 17
2112 record . . . L e e e e 17
2118 stop . . . e e e e 18
2.1.14 wait_for_first_image 18
2.1.15 wait_for_new_image L e e 18
2.1.16 get_convert_control L e e 19
2.1.17 set_convert_control L L e 19
2148 load_lut L e e 20
2.1.19 adapt_white_balance e 20
2.1.20 iMage e e e e e e e e e 21
2.1.2101Mages e e e e e 23
2.1.22 iIMmage_average i e e e e e e e e e e e e e 24
2.1.23 switch_to_camram L L 25
2.1.24 set_camram_allocation 25
2.2 Properties e e e e e e e 26
221 Ccamera_nName e e e e e e e e e e e e e e e 26
2.2.2 camera_serial e e e e e e e e e e 26
223 interface. e e e 26
224 raw_format L 26
225 is_recording e e e 26
2.2.6 IS_COIOr e e e 26
2.2.7 recorded_image_count e e e e 26
2.2.8 has_ram e e e 27
229 camram_segment e e e e e e e 27
2.2.10 camram_max_iMagesS . . . « « v v v b e e e e e e e e e e e e e e e 27
2.2.11 camram_nNuUM_IMages o v i i e e e e e e e e e e e e e e e e e e 27
2.2.12 exposure_time e e e e e e 27
2218 delay_time e e e 27
2214 descriplion L. e e e e 27
2.215 configuration L e 29
2.3 ObjeCts e e e e 31
230 sdK Lo e e e 31
2.83.2 TEC . . o e e e e e e e e e e 31

pco.python user manual 2.4.1 pco. 3

pco.oython

2.3.3 CONV . . o e e e e 31

2.4 XCIte. . . . e 32
2.4.1 NI . e e e e e e e 32
2.4.2 BXIt . e 32
243 CloSe . . . e e 32
2.4.4 default_configuration e 33
245 switchOn e 33
2.4.6 switchOff e e 33
2,47 PropertiesS e e e e 33
2471 configuration L 33

2.4.7.2 description e 33

2.4.8 ODbjects e e e e e 34
2481 XCItE€ e 34

3 About Excelitas PCO 35

pco.python user manual 2.4.1 pco. 4

pco.python e Chapter 1

1 General

The Python package pco is a powerful and easy to use high level Software Development Kit (SDK)
for working with PCO cameras. It contains everything needed for camera setup, image acquistion,
readout and color conversion.

The high-level class architecture makes it very easy to integrate PCO cameras into your own
software, while still having access to the underlying pco.sdk and pco.recorder interface for a
detailed control of all possible functionalities.

1.1 Installation

Install from pypi (recommended):

$ pip install pco

Besides the Python Standard Libary the package numpy is required and installed automatically.
For image display, the following modules can be used:

e opencv-python
e matplotlib
e Pillow
The pco module is supported for python versions greater 3.8.
Note: For cameras with USB interface on linux you will need to add usb rules to the system.

This can be done with executing the following shell script as sudo:

echo "# links for pco usb cameras" >> ./pco_usb.rules

echo "# " >> ./pco usb.rules

echo 'SUBSYSTEM=="usb" , ATTR{idVendor}=="1lcb2" , GROUP="video" , <«
MODE="0666" , SYMLINK+="pco usb camera%n"' >> ./pco _usb.rules

mkdir -p "/etc/udev/rules.d"

copy usb rules if not existing
FILE=/etc/udev/rules.d/pco _usb.rules
if ! [-f "SFILE"]; then
cp ./pco_usb.rules "/etc/udev/rules.d"
update udev rules
udevadm trigger || true
fi

rm "./pco_usb.rules"

pco.python user manual 2.4.1 pco. 5

pco.python N .' Chapter 1

1.2 Basic Usage

import matplotlib.pyplot as plt
import pco

with pco.Camera() as cam:

cam.record (mode="sequence")
image, meta = cam.image ()

plt.imshow (image, cmap='gray')
plt.show ()

250
500
750 18
1000 18
1250 48
1500 {08

1750 4

0 500 1000 1500 2000

1.3 Recorder Modes

Depending on your workflow you can choose between different recording modes.

In blocking modes the record function waits until the specified number of images is reached.
In non-blocking modes the caller must ensure that either recording is finished or the process is
waiting for the next acquired image (wait for first image /wait for new image), €.g.
for live view.

Memory modes are holding image data in RAM, while file modes save images directly to file(s) on

the disk. However, images acquired with file mode can also be accessed from memory via image
functions after recording is done.

CamRam modes are using the camera’s internal RAM memory for high-speed acquisition. Images
can be queried by reading from a segment or on the fly.

Mode Storage ' Blocking | Description |

sequence Memory yes Record a sequence of
images.

sequence non blocking Memory no Record a sequence of

images, do not wait until
record is finished.

ring buffer Memory no Continuously record
images in a ringbuffer,
once the buffer is full, old
images are overwritten.

Continued on next page

pco.python user manual 2.4.1 pco. 6

pco.python N oy Chapter 1

Continued from previous page
Mode Storage Blocking | Description |

fifo Memory no Record images in fifo
mode, i.e. you will always
read images sequentially
and once the buffer is full,
recording will pause until
older images have been
read.

sequence dpcore Memory yes Same as sequence,
but with DotPhoton
preparation enabled.

sequence non blocking dpcore | Memory no Same as
sequence non blocking
, but with DotPhoton
preparation enabled.

ring buffer dpcore Memory no Same as ring buffer,
but with DotPhoton
preparation enabled.

fifo dpcore Memory no Same as fifo, but with
DotPhoton preparation
enabled.

tif File no Record images directly
as tif files.

multitif File no Record images directly
as one or more multitiff
file(s).

pcoraw File no Record images directly
as one pcoraw file.

dicom File no Record images directly
as dicom files.

multidicom File no Record images directly
as one or more multi-
dicom file(s).
camram_segement Camera RAM | no Record images to camera
memory. Stops when
segment is full.

camram_ring Camera RAM | no Record images to camera
memory. Ram segment
is used as ring buffer.

In the code this is represented as string, transferred to the record function (default is sequence):

Note For moreinformation onthe DotPhoton preparation and image compression, please visit DotPhoton
or feel free to contact us.

1.4 Image Formats
All image data is always transferred as 2D or 3D numpy array. Besides the standard 16 bit raw

image data you also have the possibility to get your images in different formats, shown in the table
below.

pco.python user manual 2.4.1 pco. 7

https://www.dotphoton.com/

pco.python Chapter 1

The format is selected when calling the image / images / image average functions (see 2.1.20,
2.1.21, 2.1.22) of the Camera class. The image data is stored as numpy array, which enables you
to work with it in the most pythonic way.

Format ‘ Description ‘

Mono8, mono8 Get image as 8 bit grayscale data.

Monol6,monol6, rawl6,bwl6 | Getimage as 16 bit grayscale/raw data.

BGRS, bgr Get image as 24 bit color data in bgr format.

RGB8, rgb Get image as 24 bit color data in rgb format.

BGRAS8,bgra8,bgra Get image as 32 bit color data (with alpha channel) in bgra
format.

RGBAS, rgba8, rgba Get image as 32 bit color data (with alpha channel) in rgba
format.

BGR16,bgrle Get image as 48 bit color data in bgr format (only possible
for color cameras).

RGB16, rgblé6 Get image as 48 bit color data in rgb format (only possible
for color cameras).

Note For monochrome cameras, the BGR16 format is not available and the colors in the BGR8/ BGRAS
depend on the selected lut, which is a standard grayscale mapping by default. For selecting
different lut files you can use the functions setConvertControl (see 2.1.17) or loadlut (see
2.1.18) from the camera class.

1.5 Event and Error Logging

The pco package supports the python logging library, to enable logging output of the pco
package. Therefore, the predefined StreamHandler from the pco package can be used:

logger = logging.getLogger ("pco")
logger.setlLevel (logging.INFO)
logger.addHandler (pco.stream handler)

Supported logging levels are: ERROR, WARNING, INFO, DEBUG.

The logging output has following format and is written to sys.stderr:

[2023-03-07 10:39:21,270] [0.016 s] [sdk] get camera type: OK

pco.python user manual 2.4.1 pco. 8

pco.python e Chapter 2

2 APl Documentation

This section describes the methods, variables and objects of the Camera class. The following list
provides a short overview of the most important functions:

The pco.Camera class offers the following methods:

__init__() Opens and initializes a camera with its default configuration.
__exit__() Closes the camera and cleans up everything (e.g. end of with-statement).
close() Closes the camera and cleans up everything.

default_configuration() Set default configuration to the camera.
configureHWIO_*_***() Configure the HWIO channels (1-4)
auto_exposure_on(), auto_exposure_off() Switch auto exposure on/off
configure_auto_exposure() Set the parameters for auto exposure calculations
record() Initialize and start the recording of images.

stop() Stop the current recording.

wait_for_first_image() Wait until the first image has been recorded.
wait_for_new_image() Wait until a new image has been recorded.
get_convert_control() Get current color convert settings.
set_convert_control() Set new color convert settings.

load_lut() Set the lut file for the convert control setting.
adapt_white_balance() Do a white-balance according to a transferred image.
image() Read a recorded image as numpy array.

images() Read a series of recorded images as a list of numpy arrays.

image_average() Read an averaged image (averaged over all recorded images) as numpy
array.

switch_to_camram() Set camram segment for read via image functions.

set_camram_allocation() Set allocation distribution of camram segments.

The pco.Camera class has the following properties:

camera_name get the camera name.

camera_serial get the serial number of the camera.

interface get the interface of the camera.

is_recording get a flag to indicate if the camera is currently recording.
is_color get a flag to indicate if the camera is a color camera.
recorded_image_count get the number of currently recorded images.
configuration get/set the camera configuration.

description get the (static) camera description parameters.

exposure_time get/set the exposure time (in seconds).

pco.python user manual 2.4.1 pco. 9

pco.python o _._~i._ Chapter 2

delay_time get/set the delay time (in seconds).

has_ram get flag that indicate camram support of the camera.
e camram_segment get segment number of active segment.

e camram_max_images get number of images that can be stored in the active segment.

camram_num_images get number of images that are available in the active segment.

The pco.Camera class holds the following objects:

o sdk offers direct access to all underlying functions of the pco.sdk.
e rec offers direct access to all underlying functions of the pco.recorder.

e conv offers direct access to all underlying functions of the pco.convert according to the
selected data_format.

2.1 Methods

This section describes all methods offered by the pco.Camera class.

211 __init__

Description

Note for
windows

Prototype

Parameter

Opens and initializes the camera.

Optionally you can specify either which interface you want to look at or the serial number of the
camera you want to open or both.

Do not call this explicitly, this function is called automatically when a camera object is created.
Either directly cam = pco.Camera () or by the with statement.

with pco.Camera () as cam:

If you specify a serial number to be opened, we recommend to also specify the interface as this
reduces the time for the function call.

def __init (self,
interface=None,
serial=None

Name ' Description |

interface Specific interface to search for cameras. If None, search
on all interfaces.

serial Search for the camera with this specific serial number. If

None, search for any camera.

pCo.python user manual 2.4.1 pcof’ 10

pco.python e Chapter 2

Note Available interfaces are:

"FireWire",
"Camera Link MTX",
"GenICam",

"Camera Link NAT",
"GigE",

"UsB 2.0",

"Camera Link ME4",
"UsB 3.0",

"CLHS"

21.2 _ exit__

Description Closes the activated camera and releases the blocked ressources.

Do not call this explicitly, this function is called automatically when a camera object is destroyed.
Either directly cam.close () or by the with statement.

with pco.Camera () as cam:

Prototype def __exit__(self, exc type, exc value, exc traceback):

2.1.3 close

Description Closes the activated camera and releases the blocked ressources. This function must be called
before the application is terminated. Otherwise, the resources remain occupied.

This function is called automatically if the camera object was released by the with statement. An
explicit call to close () is no longer necessary.

with pco.Camera () as cam:

Prototype def close(self):

2.1.4 default_configuration

Description (Re)set the camera to its default configuration.

Prototype def default_configuration (self) :

pco.python user manual 2.4.1 pco. L

pco.oython

Chapter 2

2.1.5 configureHWIO_1_exposureTrigger

Description Configure the HWIO connector 1.

This connector is used for the exposure trigger signal input.

Prototype def configureHWIO 1 exposureTrigger (self
on,
edgePolarity
) ;

Parameter Name ‘ Description ‘
on Flag if the HWIO connector should be enabled or disabled
edgePolarity Polarity the connector should react on (valid are "rising

edge” and "falling edge”)

2.1.6 configureHWIO_2_acquireEnable

Description Configure the HWIO connector 2.

This connector is used for the acquire enable signal input.

Prototype j.¢ cont igureHWIO 2 acquireEnable (self
on,
polarity
) ;

Parameter Name ‘ Description ‘
on Flag if the HWIO connector should be enabled or disabled
polarity Polarity the connector should have (valid are "high

level” and "low level”)

pCo.python user manual 2.4.1 pcof’ 12

pco.python o _._~i._ Chapter 2

2.1.7 configureHWIO_3_statusBusy

Description

Prototype

Parameter

Return value

Note

Configure the HWIO connector 3.

This connector is typically used for the status busy output of the camera. Depending on the
camera it can also be configured to output different kind of signals, which can be selected by
the signal type parameter.

def configureHWIO 3 statusBusy (self,
on,
polarity,
signal type

) 7

Name ' Description |

on Flag if the HWIO connector should be enabled or disabled

polarity Polarity the connector should have (valid are "high
level”and "low level”)

signal type Type of the signal the connector should have (valid are
"status busy”, "status line”,”status armed”)

Description

signal type valid Boolean flag if the signal type that was selected is valid
for the camera.

Even if you select a signal type that is not valid, i.e. the function returns false, the on and
polarity parameters are set anyway.

pCo.python user manual 2.4.1 pcof’ 13

pco.python o _._~i._ Chapter 2

2.1.8 configureHWIO_4_statusExpos

Description

Prototype

Parameter

Return value

Note

Configure the HWIO connector 4.

This connector is typically used for the status exposure output of the camera. Depending on the
camera it can also be configured to output different kind of signals, selected by the signal type
parameter. In some cases, different timing modes for the exposure output signal can be selected
by the signal timing parameter.

def configureHWIO 4 statusExpos (self,
on,
polarity,
signal_ type,
signal timing = None

)i

Name ‘ Description ‘

on Flag if the HWIO connector should be enabled or disabled

polarity Polarity the connector should have (valid are "high
level” and "low level”)

signal type Type of the signal the connector should have (valid are

” o »

"status expos”,"status line”,”status armed”)

signal timing Timing of exposure output signal (valid are "first line
”, ”global”, "last 1line”, "all lines”) Only valid for
Rolling Shutter cameras and signal type ”status
expos” (default is None, i.e. will not be set)

Description

signal type valid Boolean flag if the signal type that was selected is valid
for the camera.

Even if you select a signal type that is not valid, i.e. the function returns false, the on and
polarity parameters are set anyway.

pco.python user manual 2.4.1 pco. 14

pco.python .-;,.;; “ N Chapter 2

2.1.9 configure_auto_exposure

Description

Note

Prototype

Parameter

Note

balanced

Set the auto exposure parameters.

This does not activate or deactivate the auto exposure functionality.
For this please use auto_exposure on () and auto exposure off ().

While auto_exposure on() andauto exposure off () can be called also during record, this
function can only be called when recording is off.

def configure auto_exposure (self,
region_ type,
min exposure_s,
max_exposure_s);

NETH ' Description |

region type Image region type that should be used for auto exposure
computation (see below).

min exposure_ s Minimum exposure value that can be used for auto
exposure

max_exposure_s Maximum exposure value that can be used for auto
exposure

There are 4 different types of regions available (default is 'balanced"')

'balanced’
'center based'
'corner based'
'full'

The size of the pixel clusters is fixed, but depends on the overall image size and is treated separately
for width and height:

¢ For width/height >= 1300 the cluster size is 100

e For 1300 > width/height >= 650 the cluster size is 50

¢ For 650 > width/height >= 325 the cluster size is 25

e For width/height < 325 the cluster size equal to width/height

Measurement fields positioned centrally and in all corners

pCo.python user manual 2.4.1 pcof 15

pco.python Chapter 2

center_based Measurement fields positioned centrally.

full Measurement fields across the image.

.4. D

I'IDD
mnm e e inls

‘'H B
EEn llgl

O l“I | I'I,II:J[]

2.1.10 auto_exposure_on

Description Activate the auto exposure feature.

This will use the currently set configuration for auto exposure.
To set the auto exposure mode parameters please use configure auto exposure ().

Prototype def auto_exposure on(self) ;

pCo.python user manual 2.4.1 pcof 16

pco.python Chapter 2

2.1.11 auto_exposure_off

Description Deactivate the auto exposure feature.

Prototype def auto_exposure off (self);

2.1.12 record

Description Creates, configures, and starts a new recorder instance. The entire camera configuration must
be set before calling record (). The properties exposure time and delay time are the only
exception. These properties have no effect on the recorder object and can be called up during the

recording.
Prototype def record(self,
number of images=1,
mode="sequence",
file path=None) :
Parameter IV ' Description |
number_of_images Sets the number of images allocated in the driver. The

RAM or disk (depending on the mode) of the PC limits the
maximum value.

mode Defines the recording mode for this record (see 1.3)

file_path Path where the image file(s) should be stored (only for
modes who directly save to file, see 1.3).

pCo.python user manual 2.4.1 pcof’ 17

pco.python o _._~i._ Chapter 2

2.1.13 stop

Description Stops the current recording.

In 'ring buffer' and 'fifo' mode, this function must be called by the user. In 'sequence
' and 'sequence non blocking' mode, this function is automatically called up when the
number of images is reached.

For blocking recorder modes (see 1.3), the recording is automatically stopped when the required
number of images is reached. In this case stop () is not needed.

Prototype ;¢ stop (self):

2.1.14 wait_for_first_image

Description Wait until the first image has been recorded and is available.

In recorder mode 'sequenceynon blocking', 'ring buffer'. and 'fifo', the function
record () returns immediately. Therefore, this function can be used to wait for images from the
camera before calling

image (), images (), Or image average().
Prototype def wait_for_first_image (self,
delay=True,
timeout=None) :
Parameter Name ‘ Description ‘
delay Flag if a small delay should be used in the waiting loop
(typically recommended to reduce CPU load).
timeout If not None, the waiting loop will be aborted if no image
was recorded during timeout seconds.

2.1.15 wait_for_new_image

Description Wait until a new image has been recorded and is available (i.e. an image that has not been read

yet).
Prototype def wait_for_new_image (self,
delay=True,
timeout=None) :
Parameter Name ‘ Description ‘
delay Flag if a small delay should be used in the waiting loop
(typically recommended to reduce CPU load).
timeout If not None, the waiting loop will be aborted if no image
was recorded during timeout seconds.

pCo.python user manual 2.4.1 pcof’ 18

pco.python o _._~i._ Chapter 2

2.1.16 get_convert_control

Description Get the current convert control settings for the specified data format.

Prototype def get convert control (self,
data format) :
Parameter Description
data format Data format for which the convert settings should be
queried.

Return value

Datatype Description

dict dictionary containing the current convert settings for the
specified data format.

2.1.17 set_convert_control

Description Set convert control settings for the specified data format.

Prototype def set convert control (self,
data format,
convert ctrl):
Parameter JFYESeM ' Description |
data format Data format for which the convert settings should be set.
convert ctrl Dictionary of convert control settings that should be set.

Dict Keys The available keys for convert ctrl vary according to camera properties and image format.
Cameras with color sensor support conversion control for its Bayer pattern, non-colored must
provide a LUT file for assigning colors to the monochromic image data.

Key ‘ Supported data formats ‘
”sharpen”: <bool> "Mono8", "BGR8", "BGR16"
“adaptive_sharpen”: <bool> "Mono8", "BGR8", "BGR16"
"flip_vertical”: <bool> "Mono8", "BGR8", "BGR16"
"auto_minmax”: <bool> "Mono8", "BGR8", "BGR16"
“add_conv_flags”: <int> "Mono8", "BGR8", "BGR16"
“min_limit”: <int> "Mono8", "BGR8", "BGR16"
"max_limit”": <int> "Mono8", "BGR8", "BGR16"
”gamma”: <double> "Mono8", "BGR8", "BGR16"
“contrast”: <int> "Mono8", "BGR8", "BGR16"
“color_temperature”: <int> "BGR8", "BGR16"
"color_saturation”: <int> "BGR8", "BGR16"

Continued on next page

pCo.python user manual 2.4.1 pcof’ 19

pco.python G % Chapter 2

Continued from previous page

Key ‘ Supported data formats ‘
“color_vibrance”: <int> "BGR8", "BGR16"

“color_tint”: <int> "BGR8", "BGR16"

"lut_file”: <file_path> "BGR8", for non-colored cameras

2.1.18 load lut

Description Set the lut file for the convert control settings.

This is just a convenience function, the lut file could also be set using set _convert control

(see: 2.1.17).
Prototype def load lut(self,
data format,
lut file):
Parameter IFYP_. ' Description |
data format Data format for which the lut file should be set.
lut file Actual lut file path to be set.

2.1.19 adapt_white_balance

Description Do a white-balance according to a transferred image.

Prototype def adapt white balance(self,
image,
data format,
roi);

Parameter B YRR Description |
image Image that should be used for white-balance computation.
data format Data format for which the white balance values should be

set.
roi If not None, use only the specified ROI for white-balance
computation.

pCo.python user manual 2.4.1 pcof’ 20

pco.python e Chapter 2

2.1.20 image

Description Get a recorded image in the given format. The type of the image is a numpy.ndarray. This array
is shaped depending on the resolution and ROI of the image.

Prototype def image (self,

image_ index=0,

roi=None,

data format="Undefined",
comp_ params=None) :

Parameter Yy, ‘ Description ‘

image index Index of the image that should be queried, use PCO_-
RECORDER_LATEST_IMAGE for latest image (for recorder
modes fifo/fifo_dpcore always use 0 (see 1.3)).

roi Soft ROI to be applied, i.e. get only the ROI portion of the
image.

data format Data format the image should have (see 1.4).

comp params Dictionary containing the compression parameters, not

implemented yet.

Return value

Datatype Description
(numpy.ndarray, dict) Tuple of image data as numpy . ndarray and metadata as
dictionary.

Dict Keys The available keys for meta can vary according to camera configuration. However, "data format
"and "recorder,image number" are always available.

Key ‘ Meta data ‘

"data,format": <str> "Mono8", "Monolo6", "BGR8", "BGRA8", "
BGR16", "CompressedMono8"

"recorder_ image number: <int> | from pco.recorder

"timestamp": <dict> {"imageycounter": <int>, "year": <int>, "
month": <int>, "day": <int>, "hour": <int
>, "minute": <int>, "second": <float>, "
status": <int>}

“version”: metadata: <int> from PCO_METADATA_STRUCT

“exposure time”: <int> from PCO_METADATA_STRUCT

“framerate”: metadata: <float> in Hz

“sensor temperature”: <int> from PCO_METADATA_STRUCT

"pixel clock”™: <int> from PCO_METADATA_STRUCT

“conversion factor”: <int> from PCO_METADATA_STRUCT

"serial number”: <int> from PCO_METADATA_STRUCT

“camera type”: <int> from PCO_METADATA_STRUCT

"bit resolution”: <int> from PCO_METADATA_STRUCT

Continued on next page

pCo.python user manual 2.4.1 pcof’ 21

pco.python MR Chapter 2

Continued from previous page

Key ‘ Meta data ‘

“sync status”: <int> from PCO_METADATA_STRUCT

“dark offset”: <int> from PCO_METADATA_STRUCT

"trigger mode”: <int> from PCO_METADATA_STRUCT

“double image mode: <int> from PCO_METADATA_STRUCT

“camera sync mode: <int> from PCO_METADATA_STRUCT

“image type”: <int> from PCO_METADATA_STRUCT

“color pattern”: <int> from PCO_METADATA_STRUCT

“image size”: <int> from PCO_METADATA_STRUCT

”binning”: <int> from PCO_METADATA_STRUCT

“camera subtype”: <int> from PCO_METADATA_STRUCT

“event number”: <int> from PCO_METADATA_STRUCT

“image size offset: <int> from PCO_METADATA_STRUCT

“readout mode: <int> from PCO_METADATA_STRUCT

“timestamp bcd”: <dict> {"image counter”: <int>, "year”: <int>, "month”: <int>,
’day”: <int>, "hour”: <int>, "minute”: <int>, "second”:
<float>, "status”: <int>}

Example >>> cam.record (number of images=1, mode='sequence')

>>> image, meta = cam.image ()

>>> type (image)
numpy.ndarray

>>> image.shape
(2160, 2560)

>>> image, metadata = cam.image (roi=(1, 1, 300, 300))

>>> image.shape
(300, 300)

pCo.python user manual 2.4.1 pcof’ 22

pco.python o _._~i._ Chapter 2

2.1.21 images

Description

Prototype

Parameter

Return value

Example

Get a series of images in the given format as list of numpy arrays.

The positions of the images to query are defined by a start index and a block size. If this block
size is None, all images, beginning with the given start index, are read

def images (self,
roi=None,
start idx=0,
blocksize=None,
data format="Undefined",
comp params=None) :

Name ' Description |

roi Soft ROI to be applied, i.e. get only the ROI portion of the
images.

start idx Index of the first image that should be queried.

blocksize Number of images that should be copied (if None, all
recorded images, beginning at start idx, are copied).

data format Data format the images should have (see 1.4).

comp_params Dictionary containing the compression parameters, not
implemented yet.

Datatype Description
(list (numpy.ndarray), Tuple of list of images as numpy.ndarray and list of
list (dict)) metadata as dictionary.

>>> cam.record (number of images=20, mode='sequence')
>>> images, metadatas = cam.images ()

>>> len (images)
20

>>> for image in images:
print ('Mean: {:7.2f} DN'.format (image.mean()))

Mean: 2147.64 DN
Mean: 2144.61 DN
>>> images = cam.images (roi=(1, 1, 300, 300))

>>> images|[0] .shape
(300, 300)

pCo.python user manual 2.4.1 pcof’ 23

pco.python G % Chapter 2

2.1.22 image_average

Description

Prototype

Parameter

Return value

Example

Get an averaged image, averaged over all recorded images in the given format. The type of the
image is a numpy.ndarray.

def image_average (self,
roi=None,
data format="Undefined"):

Name ' Description |

roi Soft ROI to be applied, i.e. get only the ROI portion of the
image.

data format Data format the image should have (see 1.4).

Datatype Description ‘

numpy.ndarray Image data as numpy.ndarray.

>>> cam.record (number of images=100, mode='sequence')

>>> avg cam.image average ()

>>> avg = cam.image average (roi=(1l, 1, 300, 300))

pCo.python user manual 2.4.1 pcof’ 24

pco.python Sersany Chapter 2

2.1.23 switch_to_camram

Description Sets camram segment and prepare internal recorder for reading images from camera-internal

memory.
Prototype def switch to_camram(self,
segment=None) :
Parameter JFYEseM ' Description |
segment | Segment number for image readout. Optional parameter.
Example

>>> cam.switch to camram (1)

>>> 1if camram num_ images > 0:
>>> img, meta = image (0)

2.1.24 set camram_allocation

Description Set allocation distribution of camram segments.

Maximum number of segments is 4. Accumulated sum of parameter values must not be greater

Prototype than 100.
def set camram allocation (self,
percents) :
Parameter Description
percents | List of numbers that represent percentages for segment size distribution. Length:
1<=len()<=4
Example

>>> cam.set camram allocation([70, 20])

>>> cam.set camram allocation([0.25, 0.25, 0.25, 0.25])

pCo.python user manual 2.4.1 pcof’ 25

pco.oython

2.2 Properties

2.2.1

2.2.2

2.2.3

2.2.4

2.2.5

2.2.6

2.2.7

This section describes all variables offered by the pco.Camera class.

camera_name

The camera_name property gets the name of the camera as string.
This is a readonly property.

camera_serial

The camera_serial property gets the serial number of the camera as number.
This is a readonly property.

interface

The interface property gets the interface of the camera as string.
This is a readonly property.

raw_format

The raw_format property gets the current raw format of the camera as string.
This is a readonly property.

is_recording

The is_recording property is flag to check if the camera is currently recording.
This is a readonly property.

is_color

The is_color property is a flag to check if the camera is a color camera.
This is a readonly property.

recorded_image_count

The recorded_image_count property gets the count of currently recorded images.

This is a readonly property.

NOTE For recorder modes fifo and fifo_dpcore (see 1.3) this represents the current fill
buffer, not the overall number of recorded images. So here it would be enough to check for i f

cam.recorded image count > 0 : to seeif anew image is available.

pco.python user manual 2.4.1 pco.

Chapter 2

level of the fifo

26

pco.python e Chapter 2

2.2.8 has_ram

Get flag indicating whether camera-internal memory for recording with camram is available

2.2.9 camram_segment

Get segment number of active camram segment

2.2.10 camram_max_images

Get number of images that can be stored in the active camram segment

2.2.11 camram_num_images

Get number of images that are available in the active camram segment

2.2.12 exposure_time

Get/Set the exposure time [s] of the camera

2.2.13 delay_time

Get/Set the delay time [s] of the camera

2.2.14 description

The description property gets the (static) camera description parameters as dictionary with the
following keys:
This is a readonly property.

Datatype Name ‘ Description ‘

<integer> serial Serial number of the camera

<string> type Sensor type

<integer> sub type Sensor sub type

<string> interface type Interface type

<float> min exposure time Minimal possible exposure time
[s]

<float> max exposure time Maximal possible exposure time
[s]

<float> min exposure step Minimal possible exposure step
[s]

<float> min delay time Minimal possible delay time [s]

<float> max delay time Maximal possible delay time [s]

<float> min delay step Minimal possible delay step [s]

Continued on next page

pCo.python user manual 2.4.1 pcof’ 27

pco.oython

Chapter 2

Continued from previous page

Datatype Name Description |

<integer> min width Minimal possible image width
(hardware ROI)

<integer> min height Minimal possible image height
(hardware ROI)

<integer> max width Maximal possible image width
(hardware ROI)

<integer> max height Maximal possible image height

(hardware ROI)

<tuple[int, int]> | roi steps Hardware ROI stepping as tuple
of (horz, vert)

<bool> roi is horz symmetric Flag if hardware ROI has to be
horizontally symmetric (i.e. if
X0 is increased, x1 has to be
decreased by the same value)

<bool> roi is vert symmetric Flag if hardware ROl has to
be vertically symmetric (i.e. if
y0 is increased, y1 has to be
decreased by the same value)

<integer> bit resolution Bit-resolution of the sensor

<bool> has timestamp Flag if camera supports the
timestamp setting

<bool> has ascii-only timestamp | Flag if camera supports setting
the timestamp to ascii-only

<bool> has trigger extexpctrl Flag if camera supports external
exposure controls

<list[integer]> pixelrates List containing all possible
pixelrate frequencies (index 0 is
default)

<bool> has trigger extexpctrl Flag if camera supports trigger
mode external exposure control

<bool> has acquire Flag if camera supports the
acquire mode setting

<bool> has extern acquire Flag if camera supports the
external acquire setting

<bool> has metadata Flag if metadata can be activated
for the camera

<bool> has ram Flag if camera has internal
memory

<list[integer]> binning horz vec List containing all possible
horizontal binning values

<list[integer]> binning vert vec List containing all possible

vertical binning values

<bool>

has average binning

Flag if camera supports average
binning

<list[string]>

supported pixel formats

List containing all possible pixel
formats

pCo.python user manual 2.4.1

pco:

28

Chapter 2

pco.oython

2.2.15 configuration

Get/Set the current configuration of the camera. The parameters are stored in a dictionary with
the following keys:

Datatype Key ‘ Description

<float> exposure time | Exposure time [s]

<float> delay time Delay time [s]

<tuple[int, int, int, int]> | roi Hardware ROI as tuple of (x0, y0,
x1, y1)

<string> timestamp Timestamp mode

<integer> pixel rate Pixelrate

<string> trigger Trigger mode

<string> acquire Acquire mode

<string> metadata Metadata mode

<string> noise filter Noise filter mode

<tuple[int, int, str]l> binning Binning setting as tuple of (horz,
vert, mode)

<tuplel[str, int, int]> auto exposure | Auto-Exposure setting as tuple of
(region-type, min exposure, max
exposure), see 2.1.9 for detailed
explanation of the parameters

<string> pixel format Pixel format

The values of the default configuration is shown in the following example.

config =

cam.configuration =

cam.configuration

{'exposure time':
'delay time': O,
lredVs (1, i, 512,
'timestamp': 'ascii',
'pixel rate':
'trigger':
'acquire': 'auto',
'noise filter': 'on',
'metadata': 'on',
'binning': (1, 1,
'auto exposure':

'pixel format': '1l6'}

10e-3,

512),

100_000_o000,
'auto sequence',

" Sum") ,
("balanced",

0.001, 0.1),

The property can only be changed before the record () function is called. It is a dictionary
with a certain number of entries. Not all possible elements need to be specified. The following
sample code only changes the 'pixel_ rate' and does not affect any other elements of the
configuration.

pCo.python user manual 2.4.1 29

pco:

pco.python e Chapter 2

with pco.Camera () as cam:
cam.configuration = {'pixel rate': 286 000 000}

cam.record ()

pco.python user manual 2.4.1 pco. 30

pco.python e Chapter 2

2.3 Objects

This section describes all objects offered by the pco.Camera class.

2.3.1 sdk

The object sdk allows direct access to all underlying functions of the pco.sdk library.

>>> cam.sdk.get temperature ()
{'sensor temperature': 7.0, 'camera temperature': 38.2, 'power
temperature': 36.7}

All return values from sdk functions are dictionaries. Not all camera settings are covered by the
Camera class. Special settings have to be set directly by calling the respective sdk function.

2.3.2 rec

The object rec offers direct access to all underlying functions of the pco.recorder library.

It is not necessary to call a recorder class method directly. All functions are fully covered by the
methods of the Camera class.

2.3.3 conv
The object conv is a dictionary of convert objects to offer direct access to all underlying functions
of the pco.convert library.
Valid dictionary keys are:
® Mono8: To access the pco.convert object for monochrome color conversion
e BGR8: To access the pco.convert object for color conversion
® BGR16: To access the pco.convert object for 48bit color conversion (color cameras only)

It is not be necessary to call a conv class method directly. All functions are fully covered by the
methods of the Camera class.

pCo.python user manual 2.4.1 pcof’ 31

pco.python o _._~i._ Chapter 2

2.4 XCite

241 _ init__

Description Open and initializes the XCite connection. Optionally you can specify either which interface you
want to look at or the name of the XCite device you want to open or both.

Do not call this explicitly, this function is called automatically when a XCite object is created. Either
directly xcite = pco.XCite () or by the with statement.

with pco.XCite() as xcite:
Prototype def __init (self, xcite type="Any", port=""):
Parameter IFYF_. ' Description |
xcite type Specify which XCite device to find.
port Specific interface to search the XCite device.
24.2 exit__

Description Close any active XCite connection and releases the blocked ressources.

Do not call this explicitly, this function is called automatically when a xcite object is destroyed.
Either directly xcite.close () or by the with statement.

with pco.XCite () as xcite:

Prototype def _exit_(self, exc type, exc value, exc traceback):

2.4.3 close

Description Close any active XCite connection and releases the blocked ressources. This function must be
called before the application is terminated. Otherwise, the resources remain occupied.

This function is called automatically if the xcite object was released by the with statement. An
explicit call to close () is no longer necessary.

with pco.XCite () as cam:

Prototype def close(self):

pCo.python user manual 2.4.1 pcof’ 32

pco.python Chapter 2

2.4.4 default_configuration

Description Reset the configuration of the xcite device to the default values, turns all lights off.

Prototype def default configuration(self):

2.4.5 switchOn

Description Switch the configured lights on

Prototype def switchOn (self) :

2.4.6 switchOff

Description Switch all lights off

Prototype def switchOf£f (self):

2.4.7 Properties

This section describes all variables offered by the pco.XCite class.

2.4.7.1 configuration

Get/Set the current configuration of the xcite. The parameters are stored in a dictionary with the
following keys:

Datatype Description

<dict[integer, integer]> | <wavelength as integer> | ”intensity”: <int>, ”led
state”: bool

2.4.7.2 description

The description property gets the (static) xcite description parameters as dictionary with the following
keys:
This is a readonly property.

Datatype ‘ Name ‘ Description ‘

<integer> | serial Serial number of the xcite

<string> name XCite name

<string> com port Com port as a string

<dict> wavelength exclusivity <wavelength as integer>: <int>

<dict> wavelength intensity limits | <wavelength as integer>: (<int>,
<int>) Minimal/maximum possible
intensities[%]

pco.python user manual 2.4.1 pco. 33

pco.python e Chapter 2

2.4.8 Objects

This section describes all objects offered by the pco.XCite class.

2.4.8.1 xcite
The object xcite allows direct access to all underlying functions of the etc.xcite library. It is

normally not necessary to call a xcite method directly. All functions are covered by the methods
of the XCite class.

pCo.python user manual 2.4.1 pcof’ 34

pco.python Chapter 3

3 About Excelitas PCO

Pioneering in Cameras and Optoelectronics (PCO) has been our shared philosophy since our
establishment in 1987. Starting with image-intensified cameras, followed by the co-invention of
the groundbreaking sCMOS sensor technology, PCO greatly surpassed the imaging performance
standards of the day. Acquired by Excelitas in 2021, our PCO camera portfolio continues to forge
ahead as a leader in digital imaging innovation across diverse applications such as scientific and
industrial research, automotive testing, quality control, and metrology.

With sophisticated mechanical design, extensive software support, and a broad range of accessories,
we deliver adaptable solutions for all demands. This adaptability extends to tailor-made firmware
and custom image sensors, which allow us to develop highly specialized solutions for all our
customers. PCO represents a world-renowned brand of high-performance camera systems that
complement Excelitas’ expansive range of illumination, optical, and sensor technologies and extend
the bounds of our end-to-end photonic solutions capabilities.

Our comprehensive camera portfolio covers the entire spectrum - from deep ultraviolet (DUV) to
shortwave infrared (SWIR), from long exposure to high-speed, from line scan to high-resolution
area scan. Our camera systems are controlled and processed through an intuitive and powerful
software suite addressing an extensive range of platforms and architectures.

PDCO:

pCo.python user manual 2.4.1 pcof’ 35

address:

phone:

mail:

web:

Excelitas PCO GmbH
Donaupark 11
93309 Kelheim, Germany

(+49) 9441-2005-0
(+1) 866-662-6653
(+86) 0512-6763-4643

pco@excelitas.com

www.excelitas.com/pco

pCO:

excelitas.com

4

excelitas:

	General
	Installation
	Basic Usage
	Recorder Modes
	Image Formats
	Event and Error Logging

	API Documentation
	Methods
	__init__
	__exit__
	close
	default_configuration
	configureHWIO_1_exposureTrigger
	configureHWIO_2_acquireEnable
	configureHWIO_3_statusBusy
	configureHWIO_4_statusExpos
	configure_auto_exposure
	auto_exposure_on
	auto_exposure_off
	record
	stop
	wait_for_first_image
	wait_for_new_image
	get_convert_control
	set_convert_control
	load_lut
	adapt_white_balance
	image
	images
	image_average
	switch_to_camram
	set_camram_allocation

	Properties
	camera_name
	camera_serial
	interface
	raw_format
	is_recording
	is_color
	recorded_image_count
	has_ram
	camram_segment
	camram_max_images
	camram_num_images
	exposure_time
	delay_time
	description
	configuration

	Objects
	sdk
	rec
	conv

	XCite
	__init__
	__exit__
	close
	default_configuration
	switchOn
	switchOff
	Properties
	configuration
	description

	Objects
	xcite

	About Excelitas PCO

