
 err = PCO_RecorderCreate(&hRec, &hCam, NULL, 1,

PCO_RECORDER_MODE_MEMORY,

 „C:\temp“, &maxImgCount);

DWORD regImgCount = 10

err = PCO RecorderInit(hRec. &reaImaCount. 1.

 err = PCO_RecorderCreate(&hRec, &hCam, NULL, 1,

PCO_RECORDER_MODE_MEMORY,

 „C:\temp“, &maxImgCount);

DWORD regImgCount = 10

err = PCO RecorderInit(hRec. &reaImaCount. 1.

 err = PCO_RecorderCreate(&hRec, &hCam, NULL, 1,

PCO_RECORDER_MODE_MEMORY,

 „C:\temp“, &maxImgCount);

DWORD regImgCount = 10

err = PCO RecorderInit(hRec. &reaImaCount. 1.

rec.

pco.recorder

user manual

excelitas.com

Excelitas PCO GmbH asks you to carefully read and follow the instructions in this document.

For any questions or comments, please feel free to contact us at any time.

address: Excelitas PCO GmbH

Donaupark 11

93309 Kelheim, Germany

phone: (+49) 9441-2005-0

(+1) 86-662-6653

(+86) 0512-6763-4643

mail: pco@excelitas.com

web: www.excelitas.com/pco

pco.recorder user manual 3.6.0

Released May 2025

©Copyright Excelitas PCO GmbH

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To

view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/ or send a letter to Creative

Commons, PO Box 1866, Mountain View, CA 94042, USA.

pco.recorder

pco.recorder user manual 3.6.0 2

mailto:pco@excelitas.com
https://www.excelitas.com/pco
http://creativecommons.org/licenses/by-nd/4.0/

Contents

1 General 4

1.1 Overview . 4

1.2 Conventions . 5

1.3 Recorder Modes . 5

1.4 Typical pco.recorder workflow . 7

1.5 Running Applications . 8

1.6 Compiling and Linking . 8

1.7 pco.recorder Logging . 9

1.8 Camera Health Status . 9

1.9 Change Frame Rate or Exposure Time . 9

2 API Function Description 10

2.1 PCO_RecorderGetVersion . 10

2.2 PCO_RecorderSaveImage . 11

2.2.1 File Types . 12

2.3 PCO_RecorderSaveOverlay . 12

2.4 PCO_RecorderResetLib . 13

2.5 PCO_RecorderCreate . 13

2.5.1 Recorder Modes . 15

2.6 PCO_RecorderDelete . 15

2.7 PCO_RecorderInit . 17

2.7.1 Recorder Types . 18

2.8 PCO_RecorderCleanup . 19

2.9 PCO_RecorderGetSettings . 20

2.10 PCO_RecorderStartRecord . 21

2.11 PCO_RecorderStopRecord . 22

2.12 PCO_RecorderSetAutoExposure . 22

2.13 PCO_RecorderSetAutoExpRegions . 23

2.13.1 Region Types . 25

2.14 PCO_RecorderSetCompressionParams . 27

2.14.1 PCO_Recorder_CompressionParams Structure . 27

2.15 PCO_RecorderGetStatus . 28

2.16 PCO_RecorderGetImageAddress . 29

2.16.1 Image Readout . 30

2.17 PCO_RecorderCopyImage . 30

2.18 PCO_RecorderCopyAverageImage . 32

2.19 PCO_RecorderCopyImageCompressed . 33

2.20 PCO_RecorderExportImage . 34

3 Typical Implementation 36

3.1 Basic Workflow . 36

3.2 Example Programs . 38

3.2.1 Example for PCO_RECORDER_MODE_MEMORY . 38

3.2.2 Example for PCO_RECORDER_MODE_CAMRAM . 41

3.2.3 Example for PCO_RECORDER_MODE_FILE . 44

4 About Excelitas PCO 45

pco.recorder

pco.recorder user manual 3.6.0 3

1 General

This document describes the functionality and usage of the pco.recorder. The pco.recorder is

built on top of the SDK and forms an API with a reduced amount of functions to simplify acquiring

and retrieving images compared to the standard pco.sdk functions.

Several pco.recorder instances can be created, but due to the fact that the API is not thread-safe,

the instances have to be handled very carefully in a multithreaded application.

The first chapter (1) provides a short introduction on how to work with the pco.recorder.

Chapter 2 features an overview of all available functions, described in detail.

A basic workflow and an example implementation can be found in chapter 3.

Definition

SDK Software Development Kit A SDK is a collection of libraries, sample

projects, and applications for software

development.

API Application Programming Interface An API is an interface for application

programming. It is a set of clearly defined

methods of communication between

various software components.

1.1 Overview

The basic functionality of the pco.recorder API is to configure and control the acquisition and

storage of a user defined number of images. Therefore, three main acquisition modes are available.

The image data can either be stored in computer RAM, image files, or read from the internal camera

memory.

The required functions are available via function calls inside the PCO_Recorder.dll which also

requires the SC2_Cam.dll and, depending on the interface type of the camera, sometimes also

interface DLLs (sc2_cl_me4.dll, sc2_clhs.dll …). See the SDK manual for further information.

Note for file

names

“_CamXX” will be added to the filename, where X specifies the camera index (+1) as it has been

transferred to the recorder.

For *.b16 and single tiff format, _yyyy will also be added, where y specifies the number of recorded

images.

pco.recorder Chapter 1

pco.recorder user manual 3.6.0 4

1.2 Conventions

The following typographic conventions are used in this manual:

Bold PCO_RecorderCreate Functions, procedures, or modes used

in this manual, potentially whith a cross

reference to the respective page.

Words in brackets [run] Possible values or states of the described

functions.

Capitalized words TRUE Logical or Boolean values such as TRUE,

FALSE, ON, OFF, RISING, FALLING,

HIGH, LOW.

Words in arrow brackets <acq enbl> Name of hardware input/output signals

Code font strGeneral.wSize C Example Code

Bold italics pco.recorder Important terms

1.3 Recorder Modes

The pco.recorder can be used for cameras with or without internal memory. Both camera types

can be used in streaming mode where the newest recorded images will directly be sent to the

computer. For cameras with internal memory, the images are recorded into the camera RAM

either in ring buffer or sequence mode.

There are three different ways to save the captured images (see chapters 2.5 and 2.5.1):

Value Type Description

0x0001 PCO_RECORDER_MODE_FILE pco.recorder will save the recorded

images as files on the hard drive.

0x0002 PCO_RECORDER_MODE_MEMORY pco.recorder will save the recorded

images in the computer RAM.

0x0003 PCO_RECORDER_MODE_CAMRAM Images will be read from the internal

camera memory.

pco.recorder Chapter 1

pco.recorder user manual 3.6.0 5

pco.recorder Chapter 1

pco.recorder user manual 3.6.0 6

1.4 Typical pco.recorder workflow

The following chapter describes teh typical workflow you should use for building applications with

pco.recorder. Complete example implementations can be found in chapter 3

Before you start the pco.recorder workflow

Perform all camera settings that are necessary for your

test setup. Once the pco.recorder object is created, the

settings must not be changed anymore.

1 PCO_RecorderCreate

This is the first function that has to be called. Here the user has to transfer all camera handles that

should be contolled by the pco.recorder instance. In this function you define also the acquisition

mode (see chapter 1.3) of the pco.recorder After the pco.recorder object is created, only the

following pco.sdk commands are allowed until PCO_RecorderDelete is called:

• PCO_GetCameraHealthStatus (see chapter 1.8)

• PCO_SetDelayExposureTime (see chapter 1.9)

• PCO_GetDelayExposureTime

• PCO_SetFramerate (see chapter 1.9)

• PCO_GetFramerate

2 PCO_RecorderInit

ThePCO_RecorderCreate function delivers the maximum number of recordable images (depending

on the pco.recorder type). Considering this upper limit, the pco.recorder can be initialized with

the required number of images that shall be recorded using PCO_RecorderInit. In this function

you also define the recorder type, which depends on the previously selected acquisition mode

(see 2.7.1)

3 PCO_RecorderStartRecord and PCO_RecorderStopRecord

Calling PCO_RecorderStartRecord will start the acquisition. For PCO_RECORDER_MODE_-

FILE, PCO_RECORDER_MODE_MEMORY with type sequence (see chapter 2.5.1 and 2.7.1), or

PCO_RECORDER_MODE_CAMRAM with the camera operating internally in sequence mode, the

recording will be stopped automatically.

For PCO_RECORDER_MODE_MEMORY with type ring buffer or FIFO (see chapter 2.5.1 and

2.7.1), or PCO_RECORDER_MODE_CAMRAM with the camera operating internally in ring buffer

mode, the acquisition has to be stopped manually by calling PCO_RecorderStopRecord (see

graphic representation in chapter 1.3). Calling this function during the recording will stop the

acquisition.

4 PCO_RecorderGetSettings and PCO_RecorderGetStatus

The main settings and the status of the pco.recorder can be checked usingPCO_RecorderGetSettings

and PCO_RecorderGetStatus.

pco.recorder Chapter 1

pco.recorder user manual 3.6.0 7

5 PCO_RecorderCopyImage or PCO_RecorderGetImageAddress

The recorded images can be accessed either by PCO_RecorderGetImageAddress (not available

in PCO_RECORDER_MODE_CAMRAM), which delivers the address of the required image buffer,

or by using PCO_RecorderCopyImage, which copies the required image inside a defined region

of interest (ROI) in a preallocated buffer.

Note that PCO_RecorderCopyImage can be called also when the acquisition is running while

PCO_RecorderGetImageAddress will be rejected (with an error code) during the recording.

6 PCO_RecorderDelete or PCO_RecorderCleanup

When the image processing/analysis is finished, PCO_RecorderDelete can be called to close

the pco.recorder instance and delete the handle. It is also possible to reset the pco.recorder

with PCO_RecorderCleanup. This will reset the data of all image buffers to 0 or, in PCO_-

RECORDER_MODE_FILE, delete all created files, but will not free the resources.

Alternatively, it is also possible to start a new acquisition with PCO_RecorderStartRecord which,

inPCO_RECORDER_MODE_MEMORY, will overwrite the data in the buffers or, inPCO_RECORDER_-

MODE_FILE, overwrite the old files.

For PCO_RECORDER_MODE_CAMRAM, the function only affects the internal buffers of the

pco.recorder. PCO_RecorderCleanup has no effect on the images in the camera memory. A

new start acquisition will overwrite the images, just as this would be the case when you start the

recording with our standard pco.sdk.

1.5 Running Applications

To allow access to the API, the PCO_Recorder.dll, the SC2_Cam.dll and possibly additional

interface DLLs must reside in the application directory or in the library search path when implicit

linkage is used.

The user can also link explicitly. In this case, the DLLs named above can be placed in the application

folder or search path.

The files can also be placed in a known folder, but it is necessary to call LoadLibrary with the

complete path in this case.

1.6 Compiling and Linking

To use the API Library in an application, the PCO_Recorder_Export.h and the PCO_Recorder_-

Defines.h file must be added in addition to the standard header files. The application program

must be linked with the appropriate library (32 bit or 64 bit), which can be found in the lib or lib64

folders.

The API can be called up by linking to the PCO_Recorder.lib via the project settings.

Another option is loading the required functions from the PCO_Recorder.dll explicitly at runtime

with the LoadLibrary function of the Windows API.

pco.recorder Chapter 1

pco.recorder user manual 3.6.0 8

1.7 pco.recorder Logging

The pco.recorder also supports troubleshooting.

If there are problems, you can force the pco.recorder to write the workflow into a log file by

creating a file called PCO_Recorder.log in the following directory:

>systemdisc<:\ProgramData\pco\ (On Windows 7/8/10)

Several log levels can be selected. This is done via the ’LOGGING=’ parameter in the appropriate

PCO_Recorder_param.ini file.

For more information about logging with PCO software products, please consult our website

regarding the pco.logging tool.

1.8 Camera Health Status

Note that the pco.recorder will not take care of the camera health status internally.

It is recommended to call PCO_GetCameraHealthStatus frequently in order to recognize camera

internal problems and react to them. This helps to prevent camera hardware from damage.

1.9 Change Frame Rate or Exposure Time

The frame rate is generally limited by readout and exposure times (whichever is larger) and the

other way round.

framerate ≤ 1

texposure

framerate ≤ 1

treadout

pco.recorder Chapter 1

pco.recorder user manual 3.6.0 9

https://www.pco.de/software/add-ons/pcologging/

2 API Function Description

2.1 PCO_RecorderGetVersion

Description This function retrieves the current version information from the pco.recorder DLL.

Supported

camera type(s)

All cameras

Prototype
void WINAPI PCO_RecorderGetVersion (

int* iMajor, //out

int* iMinor, //out

int* iPatch, //out

int* iBuild //out

);

Parameter Name Type Description

iMajor int* Pointer to get the major version (can be set to NULL if not relevant)

iMinor int* Pointer to get the minor version (can be set to NULL if not relevant)

iPatch int* Pointer to get the patch version (can be set to NULL if not relevant)

iBuild int* Pointer to get the build number (can be set to NULL if not relevant)

pco.recorder Chapter 2

pco.recorder user manual 3.6.0 10

2.2 PCO_RecorderSaveImage

Description This function saves the transferred image as a file at the transferred file path. The file type is

implicitly specified by the file extension (e.g. *.tif, *.dcm, *.asc, …). The pco.recorder supports

the same file formats as pco.camware. The image type (bw/color, 8/16 Bit) has to be defined

via the filetype parameter. If required, additional metadata can be added to the image using the

metadata structure.

Note No recorder instance needs to be created for this function.

Supported

camera type(s)

All cameras

Prototype
int WINAPI PCO_RecorderSaveImage (

void* pImgBuf, //in

WORD wWidth, //in

WORD wHeight, //in

const char* cFileType, //in

bool bIsBitmap, //in

const char* szFilePath, //in

bool bOverwrite, //in

PCO_METADATA_STRUCT* strMetadata //in

);

Parameter Name Type Description

pImgBuf void* Pointer to the image that should be saved

wWidth WORD Width of the image

wHeight WORD Height of the image

cFileType const char* File type of the input image (see chapter 2.2.1)

bIsBitmap bool Flag to indicate if the input image has bitmap

format.

If you use images from the recorder this is

always false

szFilePath const char* File path (including filename and extension)

where the file should be saved.

The extension defines the file type

bOverwrite bool Flag to overwrite an already existing file

strMetadata PCO_METADATA_STRUCT* Metadata object containing the additional

information that should be saved with the image

(can be set to NULL if no metadata should be

saved)

(see pco.sdk manual for struct description)

Return value Name Type Description

ErrorMessage int 0 in case of success, Errorcode otherwise.

pco.recorder Chapter 2

pco.recorder user manual 3.6.0 11

2.2.1 File Types

Value Type Description

”M_16” FILESAVE_IMAGE_BW_16 Image is monochrome 16 bit

”M_08” FILESAVE_IMAGE_BW_8 Image is monochrome 8 bit

”C_16” FILESAVE_IMAGE_COL_16 Image is color 16 bit

”C_08” FILESAVE_IMAGE_COL_8 Image is color 8 bit

2.3 PCO_RecorderSaveOverlay

Description This function creates a color image out of three transferred monochrome images and saves it at

the transferred file path. The file type is implicitly specified by the file extension (e.g. *.tif, *.dcm,

*.asc, …). The pco.recorder supports the same file formats as pco.camware.

Note No recorder instance needs to be created for this function.

Supported

camera type(s)

All cameras

Prototype
int WINAPI PCO_RecorderSaveOverlay (

void* pImgBufR, //in

void* pImgBufG, //in

void* pImgBufB, //in

WORD wWidth, //in

WORD wHeight, //in

const char* cFileType, //in

const char* szFilePath, //in

bool bOverwrite, //in

PCO_METADATA_STRUCT* strMetadata //in

);

Parameter Name Type Description

pImgBufR void* Pointer to the image that should be used as red

channel

pImgBufG void* Pointer to the image that should be used as

green channel

pImgBufB void* Pointer to the image that should be used as blue

channel

wWidth WORD Width of the image

wHeight WORD Height of the image

cFileType const char* File type of the input image (see chapter 2.2.1)

szFilePath const char* File path (including filename and extension)

where the file should be saved.

The extension defines the file type

bOverwrite bool Flag to overwrite an already existing file

Continued on next page

pco.recorder Chapter 2

pco.recorder user manual 3.6.0 12

Continued from previous page

Name Type Description

strMetadata PCO_METADATA_STRUCT* Metadata object containing the additional

information that should be saved with the image

(can be set to NULL if no metadata should be

saved)

(see pco.sdk manual for struct description)

Return value Name Type Description

ErrorMessage int 0 in case of success, Errorcode otherwise.

2.4 PCO_RecorderResetLib

Description This function checks if at least one pco.recorder instance is active. If so, the user is asked via a

message box whether they really want to reset. If the silent flag is set, this message box will be

omitted and the reset will be completed.

The reset will delete all pco.recorder instances that are currently active (= created).

Supported

camera type(s)

All cameras

Prototype
int WINAPI PCO_RecorderResetLib (

bool bSilent //in

);

Parameter Name Type Description

bSilent bool Flag to decide if the message box should be omitted when a recorder

instance is active

TRUE: If pco.recorder instances are active, reset will be done anyway,

without showing a message box

FALSE: If pco.recorder instances are active, the function shows a

message box to decide if reset should be done.

PCO_ERROR_SDKDLL_ALREADYOPENED will be returned if reset is denied

by the user

Return value Name Type Description

ErrorMessage int 0 in case of success, Errorcode otherwise.

2.5 PCO_RecorderCreate

Description This function creates an instance of the pco.recorder. It takes an array of handles to the required

cameras as input parameter. If the function succeeds, sdk functions may not be used, except for

those listed in chapter 1.4 under 1 PCO_RecorderCreate.

pco.recorder Chapter 2

pco.recorder user manual 3.6.0 13

The main task of this function is to calculate the maximum recordable number of images for every

camera by checking the available memory (RAM, disc or camera internal memory, depending on

the recorder mode) and the required distribution of the memory to the single cameras (e.g. camera

1 should get twice as much available memory as camera 2, then the distribution would be [2, 1]).

If the pco.recorder mode is PCO_RECORDER_MODE_FILE, a letter for the drive on which the

files will be saved, has to be specified. For the other modes, this parameter is ignored.

Note

• It is also possible to create several recorder instances, but make sure not to use the same

camera handles. Otherwise your application could crash.

• For PCO_RECORDER_MODE_FILE, this function returns a warning if the file name of the

specified path already exists.

• For PCO_RECORDER_MODE_CAMRAM, the memory distribution has no effect.

Here dwImgDistributionArr can be set to NULL.

Supported

camera type(s)

All cameras

Prototype
int WINAPI PCO_RecorderCreate (

HANDLE* phRec, //in, out

HANDLE* phCamArr, //in

const DWORD* dwImgDistributionArr, //in

WORD wArrLength, //in

WORD wRecMode, //in

const char* szDrive, //in

DWORD* dwMaxImgCountArr //out

);

Parameter Name Type Description

phRec HANDLE* Pointer to a HANDLE:

on Input: HANDLE must be set to NULL

on Output: A unique HANDLE to the created

pco.recorder object is returned

phCamArr HANDLE* Array of handles to the cameras that should

be used by the pco.recorder

dwImgDistributionArr const DWORD* Array defining the memory distribution

between the used cameras (can be set

to NULL for equal distribution or PCO_-

RECORDER_MODE_CAMRAM)

wArrLength WORD Length of all transferred arrays and also length

of the maxImgCountArray

wRecMode WORD Required mode of the pco.recorder (see

chapter 2.5.1)

szDrive const char* Root path name that represents the required

drive to save the images to, e.g. ”C”, ”C:” for

system drive on windows, path to mounted

disk e.g. ”/” or ”/media/<drive_name>”

on linux (only for PCO_RECORDER_MODE_-

FILE, ignored otherwise)

Continued on next page

pco.recorder Chapter 2

pco.recorder user manual 3.6.0 14

Continued from previous page

Name Type Description

dwMaxImgCountArr DWORD* Array to get the maximum available image

count for each camera (length must be equal

to length of the camera handle array)

Return value Name Type Description

ErrorMessage int 0 in case of success, Errorcode otherwise.

2.5.1 Recorder Modes

For further explanations on the different modes of the pco.recorder and how to use them, please

see chapter 1.3.

1 PCO_RECORDER_MODE_FILE

Value Type Description

0x0001 PCO_RECORDER_MODE_FILE pco.recorder will save the recorded images as

files on the hard drive (see chapter 2.7.1 for

available types)

2 PCO_RECORDER_MODE_MEMORY

Value Type Description

0x0002 PCO_RECORDER_MODE_MEMORY pco.recorder will save the recorded images

in the computer RAM (see chapter 2.7.1 for

available types)

3 PCO_RECORDER_MODE_CAMRAM

Value Type Description

0x0003 PCO_RECORDER_MODE_CAMRAM Images will be read from the internal camera

memory (see chapter 2.7.1 for available

types)

2.6 PCO_RecorderDelete

Description This function deletes the pco.recorder object. If necessary, it frees all allocated memory and

resources. After this function has succeeded, the pco.recorder handle will be invalid.

The function will be rejected with an error if an acquisition is running.

Supported

camera type(s)

All cameras

Prototype

pco.recorder Chapter 2

pco.recorder user manual 3.6.0 15

int WINAPI PCO_RecorderDelete (

HANDLE phRec //in

);

Parameter Name Type Description

phRec HANDLE HANDLE to a previously created pco.recorder object

Return value Name Type Description

ErrorMessage int 0 in case of success, Errorcode otherwise.

pco.recorder Chapter 2

pco.recorder user manual 3.6.0 16

2.7 PCO_RecorderInit

Description This function initializes the pco.recorder according to the required number of images for each

camera. It will discard previous initializations.

ForPCO_RECORDER_MODE_MEMORY, it will allocate the necessary RAM to store the images.

For PCO_RECORDER_MODE_FILE, it checks whether files with the same name already exist

and, depending on the wNoOverwrite flag, either deletes the old files or if the flag is set, renames

them. A file is renamed by adding (n) to the filename, where n is the lowest number that has not

been used yet. This means the higher the numbers in the brackets, the newer the files, but the file

without brackets is always the newest/current one.

ForPCO_RECORDER_MODE_CAMRAM, the function will activate the required segment if necessary

and update the maximum image count and the number of recorded images internally. If the camera

RAM segment in this function is different to the one that was active during PCO_RecorderCreate,

it might occur that the required image count is too large, even if the maximum image count

from the PCO_RecorderCreate function is not reached. So anyway it is recommended to call

PCO_RecorderGetSettings and PCO_RecorderGetStatus to update these parameters after this

function. It is also possible to read images directly afterPCO_RecorderInit, if the selected segment

already contains images.

The function will be rejected with an error if an acquisition is running.

Supported

camera type(s)

All cameras

Prototype
int WINAPI PCO_RecorderInit (

HANDLE phRec, //in

DWORD* dwImgCountArr, //in

WORD wArrLength, //in

WORD wType, //in

WORD wNoOverwrite, //in

const char* szFilePath, //in

WORD* wRamSegmentArr //in

);

Parameter Name Type Description

phRec HANDLE HANDLE to a previously created pco.recorder object

dwImgCountArr DWORD* Array containing the required image counts for all

cameras

wArrLength WORD Length of the imgCountArr (must match with the

number of cameras)

wType WORD Type of the selected pco.recorder mode (functionality

depends on pco.recorder modes) (see chapter 2.7.1)

wNoOverwrite WORD Flag to decide whether existing files should be kept

and renamed (files will be deleted if NOT SET) (only for

PCO_RECORDER_MODE_FILE, ignored otherwise)

szFilePath const char* Path (including filename) where the image files should

be saved (only for PCO_RECORDER_MODE_FILE,

ignored otherwise)

Continued on next page

pco.recorder Chapter 2

pco.recorder user manual 3.6.0 17

Continued from previous page

Name Type Description

wRamSegmentArr WORD* Array containing the camera RAM segments (must

match with the number of cameras = wArrLength

) to be used for acquisition and readout, it can be

set to NULL if no RAM segment change is required

(only PCO_RECORDER_MODE_CAMRAM, ignored

otherwise)

Return value Name Type Description

ErrorMessage int 0 in case of success, Errorcode otherwise.

2.7.1 Recorder Types

For further explanations on the different modes of the pco.recorder and how to use them, please

see chapter 1.3.

1 Types for PCO_RECORDER_MODE_FILE

Value Type Description

0x0001 PCO_RECORDER_FILE_TIF Images will be saved on the hard drive in

single TIFF format

0x0002 PCO_RECORDER_FILE_MULTITIF Images will be saved on hard drive in multi

TIFF format

0x0003 PCO_RECORDER_FILE_PCORAW Images will be saved on hard drive in

pcoraw format

0x0004 PCO_RECORDER_FILE_B16 Images will be saved on hard drive in b16

format

0x0005 PCO_RECORDER_FILE_DICOM Images will be saved on hard drive in

single dicom format

0x0006 PCO_RECORDER_FILE_MULTIDICOM Images will be saved on hard drive in multi

dicom format

2 Types for PCO_RECORDER_MODE_MEMORY

Value Type Description

0x0001 PCO_RECORDER_MEMORY_SEQUENCE Images will be recorded into the

computer memory sequentially, until

the required image number is reached

0x0002 PCO_RECORDER_MEMORY_RINGBUF Images will be recorded into the

computer memory in ring buffer mode.

After calling stop acquisition, the latest

images are in the buffers

Continued on next page

pco.recorder Chapter 2

pco.recorder user manual 3.6.0 18

Continued from previous page

Value Type Description

0x0003 PCO_RECORDER_MEMORY FIFO Images will be recorded into the

computer memory in fifo mode. If the

required image number is reached, the

acquisition will wait until first images

have been read. Here it is only

possible to read out sequentially

3 Types for PCO_RECORDER_MODE_CAMRAM

Value Type Description

0x0001 PCO_RECORDER_CAMRAM_SEQUENTIAL pco.recorder will get the images

from the internal camera memory.

The readout is optimized for

sequential reading. This means

that if an image is queried, the

readout for the next image in

the series will automatically be

triggered in parallel

0x0002 PCO_RECORDER_CAMRAM_SINGLE_IMAGE pco.recorder will get the images

from the internal camera memory.

The readout is not optimized.

Images will be read from the

camera when they are queried

2.8 PCO_RecorderCleanup

Description This function resets the recorded images either for one specific camera or for all cameras (if

NULL is transferred as camera handle). For PCO_RECORDER_MODE_FILE, reset means that

all previously recorded image files will be deleted.

For PCO_RECORDER_MODE_MEMORY or PCO_RECORDER_MODE_CAMRAM, the image

data in the allocated buffers will be reset to 0. The function will not affect the images in the internal

camera memory.

The function will be rejected with an error if an acquisition is running.

Supported

camera type(s)

All cameras

Prototype
int WINAPI PCO_RecorderCleanup (

HANDLE phRec, //in

HANDLE phCam //in

);

Parameter Name Type Description

phRec HANDLE HANDLE to a previously created pco.recorder object

phCam HANDLE HANDLE to a particular camera (or NULL for all cameras)

pco.recorder Chapter 2

pco.recorder user manual 3.6.0 19

Return value Name Type Description

ErrorMessage int 0 in case of success, Errorcode otherwise.

2.9 PCO_RecorderGetSettings

Description This function retrieves the current pco.recorder settings for a specific camera.

Note For PCO_RECORDER_MODE_CAMRAM, dwMaxImgCount will be updated if the segment has

changed during PCO_RecorderInit.

Supported

camera type(s)

All cameras

Prototype
int WINAPI PCO_RecorderGetSettings (

HANDLE phRec, //in

HANDLE phCam, //in

DWORD* dwRecMode, //out

DWORD* dwMaxImgCount, //out

DWORD* dwReqImgCount, //out

WORD* wWidth, //out

WORD* wHeight, //out

WORD* wMetadataLines //out

);

Parameter Name Type Description

phRec HANDLE HANDLE to a previously created pco.recorder object

phCam HANDLE HANDLE to a particular camera to get the settings from

dwRecMode DWORD* Pointer to a DWORD to get the selected mode of the

pco.recorder (High Word is Recorder Mode; Low Word is

Recorder Type) (can be set to NULL if not relevant)

dwMaxImgCount DWORD* Pointer to a DWORD to get the maximum number of recordable

images for the selected cameras (can be set to NULL if not

relevant)

dwReqImgCount DWORD* Pointer to a DWORD to get the required number of recordable

images for the selected cameras (can be set to NULL if not

relevant)

wWidth WORD* Pointer to a WORD to get the image width of the camera (can

be set to NULL if not relevant)

wHeight WORD* Pointer to a WORD to get the image height of the camera (can

be set to NULL if not relevant)

wMetadataLines WORD* Pointer to a WORD to get the metadata lines added at the end

of an image, will be 0 for Metadata Mode OFF (can be set to

NULL if not relevant)

Return value

pco.recorder Chapter 2

pco.recorder user manual 3.6.0 20

Name Type Description

ErrorMessage int 0 in case of success, Errorcode otherwise.

2.10 PCO_RecorderStartRecord

Description This function starts the recording either for a specific camera or for all cameras (if NULL is transferred

as camera handle).

Supported

camera type(s)

All cameras

Prototype
int WINAPI PCO_RecorderStartRecord (

HANDLE phRec, //in

HANDLE phCam //in

);

Parameter Name Type Description

phRec HANDLE HANDLE to a previously created pco.recorder object

phCam HANDLE HANDLE to a particular camera that should be started or NULL if all cameras

should be started

Return value Name Type Description

ErrorMessage int 0 in case of success, Errorcode otherwise.

pco.recorder Chapter 2

pco.recorder user manual 3.6.0 21

2.11 PCO_RecorderStopRecord

Description This function stops the recording either for a specific camera or for all cameras (if NULL is transferred

as camera handle).

Supported

camera type(s)

All cameras

Prototype
int WINAPI PCO_RecorderStopRecord (

HANDLE phRec, //in

HANDLE phCam //in

);

Parameter Name Type Description

phRec HANDLE HANDLE to a previously created pco.recorder object

phCam HANDLE HANDLE to a particular camera that should be stopped or NULL if all

cameras should be stopped

Return value Name Type Description

ErrorMessage int 0 in case of success, Errorcode otherwise.

2.12 PCO_RecorderSetAutoExposure

Description This function activates or deactivates the auto exposure functionality for the selected camera or

for all cameras (if NULL is transferred as camera handle).

For this functionality, an exposure range has to be selected where the pco.recorder should be

allowed to change the exposure time. Additionally, the transition between exposure time changes

can be controlled by a smoothness factor, where 1 means a direct switch to the new exposure

time. The higher this value is, the smoother the transition and thus the smoother the adjustment

will be (a maximum of 10 is allowed).

The function will be rejected with an error if pco.recorder is not initialized.

Supported

camera type(s)

All cameras

Prototype
int WINAPI PCO_RecorderSetAutoExposure (

HANDLE phRec, //in

HANDLE phCam, //in

bool bAutoExpState, //in

WORD wSmoothness, //in

DWORD dwMinExposure, //in

DWORD dwMaxExposure, //in

WORD wExpBase //in

);

pco.recorder Chapter 2

pco.recorder user manual 3.6.0 22

Parameter Name Type Description

phRec HANDLE HANDLE to a previously created pco.recorder object

phCam HANDLE HANDLE to a particular camera (or NULL for all cameras)

bAutoExpState bool Indicator if auto exposure should be activated

wSmoothness WORD Value defining how smooth the transition between exposure

times should be (valid are 1 - 10)

dwMinExposure DWORD Minimum exposure value that can be used for auto exposure (in

expBase units)

dwMaxExposure DWORD Maximum exposure value that can be used for auto exposure

(in expBase units)

wExpBase WORD Exposure unit of the transferred exposure time range (0:ns, 1:us,

2:ms)

Return value Name Type Description

ErrorMessage int 0 in case of success, Errorcode otherwise.

2.13 PCO_RecorderSetAutoExpRegions

Description This function sets the regions of interest for the auto exposure functionality for the selected camera

or for all cameras (if NULL is transferred as camera handle).

It is possible to set four different predefined region types (0=balanced, 1=center based, 2=corner

based, 3=full) or to define custom regions (=4). Depending on the type a different set of pixel

clusters is used to compute the mean values, this can be seen in section 2.13.1. For a custom

region up to 7 region-blocks with FIXED size (containing 9 pixel clusters) can be specified using

the top left point for each region.

Note The size of the pixel clusters is fixed, but depends on the overall image size and is treated seperately

for width and height:

• For width/height >= 1300 the cluster size is 100

• For 1300 > width/height >= 650 the cluster size is 50

• For 650 > width/height >= 325 the cluster size is 25

• For width/height < 325 the cluster size equal to width/height

Supported

camera type(s)

All cameras

Prototype
int WINAPI PCO_RecorderSetAutoExpRegions (

HANDLE phRec, //in

HANDLE phCam, //in

WORD wRegionType, //in

WORD* wRoiX0Arr, //in

WORD* wRoiY0Arr, //in

WORD wArrLength //in

);

pco.recorder Chapter 2

pco.recorder user manual 3.6.0 23

Parameter Name Type Description

phRec HANDLE HANDLE to a previously created pco.recorder object

phCam HANDLE HANDLE to a particular camera (or NULL for all cameras)

wRegionType WORD Type of the region to be set

0x0000 = balanced

0x0001 = center based

0x0002 = corner based

0x0003 = full

0x0004 = custom

wRoiX0Arr WORD* Array of x0 values (starting with 1) defining the left position of the

desired regions (only for custom region, set to NULL otherwise)

wRoiY0Arr WORD* Array of y0 values (starting with 1) defining the upper position of the

desired regions (only for custom region, set to NULL otherwise)

wArrLength WORD Length of the ROI arrays (maximum 7) (only for custom region, set

to 0 otherwise)

Return value Name Type Description

ErrorMessage int 0 in case of success, Errorcode otherwise.

pco.recorder Chapter 2

pco.recorder user manual 3.6.0 24

2.13.1 Region Types

0x0000 REGION_TYPE_BALANCED

Measurement fields positioned centrally and in all corners.

0x0001
REGION_TYPE_CENTER_BASED

Measurement fields positioned centrally.

pco.recorder Chapter 2

pco.recorder user manual 3.6.0 25

0x0002 REGION_TYPE_CORNER_BASED

Measurement fields positioned in all four corners.

0x0003
REGION_TYPE_FULL

Measurement fields across the image.

0x0004
REGION_TYPE_CUSTOM

Select up to 7 regions on your own. Values of the example regions:

wRoiX0Arr = [301, 901, 1401];

wRoiY0Arr = [101, 601, 1101]

pco.recorder Chapter 2

pco.recorder user manual 3.6.0 26

2.14 PCO_RecorderSetCompressionParams

Description This function sets the PCO_Recorder_CompressionParams structure in order to enable the

PCO_RecorderCopyImageCompressed function. The parameters will be used to calculate a

LUT according to the extended noise equilibration method published in TM - Technisches Messen

(doi:10.1515/teme-2019-0022). This LUT will be used inPCO_RecorderCopyImageCompressed

to compress the images from 16 bit to 8 bit. The function must be called after PCO_RecorderInit

and before PCO_RecorderDelete.

Supported

camera type(s)

All cameras

Prototype
int WINAPI PCO_RecorderSetCompressionParams (

HANDLE phRec, //in

HANDLE phCam, //in

PCO_Recorder_CompressionParams* strCompressionParams //in

);

Parameter Name Type Description

phRec HANDLE HANDLE to a

previously created

pco.recorder

object

phCam HANDLE HANDLE to a

particular camera

strCompressionParams PCO_Recorder_CompressionParams* Pointer to struct

containing the

necessary noise

parameters for

the compression /

equilibration of the

specific camera.

See chapter 2.14.1

for the details

Return value Name Type Description

ErrorMessage int 0 in case of success, Errorcode otherwise.

2.14.1 PCO_Recorder_CompressionParams Structure

Name Type Description

dGainK double System gain K in DN/e− (= 1/conversion factor)

dDarkNoise_e double Temporal dark noise in electrons (= RMS readout

noise)

dDSNU_e double DSNU in electrons

Continued on next page

pco.recorder Chapter 2

pco.recorder user manual 3.6.0 27

Continued from previous page

Name Type Description

dPRNU_pct double PRNU in percent

dLightSourceNoise_pct double RMS intensity noise of the light source (set to 0 if not

known or negligible)

The first four values can be found in the datasheets of the camera. If more precise values are

needed for a specific camera, please contact us at PCO: pco@excelitas.com

2.15 PCO_RecorderGetStatus

Description This function retrieves the current pco.recorder status for a specific camera.

Note for dwProcImgCount:

• For PCO_RECORDER_MODE_CAMRAM dwProcImgCount is the fill level of the current

segment and will be updated if the segment has changed in PCO_RecorderInit.

• ForPCO_RECORDER_MODE_MEMORYwith type FIFO, dwProcImgCount shows the currently

available buffers in the FIFO, so an image can only be read if the value is >0.

Supported

camera type(s)

All cameras

Prototype
int WINAPI PCO_RecorderGetStatus (

HANDLE phRec, //in

HANDLE phCam, //in

bool* bIsRunning, //out

bool* bAutoExpState, //out

DWORD* dwLastError, //out

DWORD* dwProcImgCount, //out

DWORD* dwReqImgCount, //out

bool* bBuffersFull, //out

bool* bFIFOOverflow, //out

DWORD* dwStartTime, //out

DWORD* dwStopTime //out

);

Parameter Name Type Description

phRec HANDLE HANDLE to a previously created pco.recorder object

phCam HANDLE HANDLE to a particular camera to get the status from

bIsRunning bool* Pointer to a bool to get the running status (can be set to NULL

if not relevant)

bAutoExpState bool* Pointer to a bool to get the auto exposure status (can be set

to NULL if not relevant)

dwLastError DWORD* Pointer to a DWORD to get the last error that occurred (can be

set to NULL if not relevant)

dwProcImgCount DWORD* Pointer to a DWORD to get the number of currently recorded

images (can be set to NULL if not relevant)

Continued on next page

pco.recorder Chapter 2

pco.recorder user manual 3.6.0 28

mailto:pco@excelitas.com

Continued from previous page

Name Type Description

dwReqImgCount DWORD* Pointer to a DWORD to get the required number of images (can

be set to NULL if not relevant)

bBuffersFull bool* Pointer to a bool to get the indicator if the allocated buffers

are all filled (can be set to NULL if not relevant)

bFIFOOverflow bool* Pointer to a bool to get the indicator if a FIFO overflow

occurred, only relevant in PCO_RECORDER_MODE_-

MEMORY with FIFO type (see chapter 2.7.1) (can be set to

NULL if not relevant)

dwStartTime DWORD* Pointer to a DWORD to get the start time in ms of the latest

started acquisition (can be set to NULL if not relevant)

dwStopTime DWORD* Pointer to a DWORD to get the stop time in ms of the latest

finished acquisition (can be set to NULL if not relevant)

Return value Name Type Description

ErrorMessage int 0 in case of success, Errorcode otherwise.

2.16 PCO_RecorderGetImageAddress

Description This function retrieves the address of the specified image from the specified camera.

Note

• If the image index exceeds the number of required or recorded images (depending on which

value is smaller), the function will return with an error. If PCO_RECORDER_LATEST_-

IMAGE (see chapter 2.16.1) is set as the image index, the address of the latest image will be

transferred.

• This function is not available for PCO_RECORDER_MODE_CAMRAM.

The function will be rejected with an error if an acquisition is running.

Supported

camera type(s)

All cameras

Prototype
int WINAPI PCO_RecorderGetImageAddress (

HANDLE phRec, //in

HANDLE phCam, //in

DWORD dwImgIdx, //in

void** wImgBuf, //out

WORD* wWidth, //out

WORD* wHeight, //out

DWORD* dwImgNumber //out

);

pco.recorder Chapter 2

pco.recorder user manual 3.6.0 29

Parameter Name Type Description

phRec HANDLE HANDLE to a previously created pco.recorder object

phCam HANDLE HANDLE to the required camera

dwImgIdx DWORD Index of the required image

wImgBuf void** Pointer to a WORD* to get the address of the required image data

wWidth WORD* Pointer to a WORD to get the image width of the camera

wHeight WORD* Pointer to a WORD to get the image height of the camera

dwImgNumber DWORD* Pointer to a DWORD to get the number of the requested image (can

be set to NULL if not relevant)

Return value Name Type Description

ErrorMessage int 0 in case of success, Errorcode otherwise.

2.16.1 Image Readout

Value Type Description

0xFFFFFFFF PCO_RECORDER_LATEST_IMAGE pco.recorder will address the latest

image

2.17 PCO_RecorderCopyImage

Description This function copies a defined ROI of the specified image from the specified camera into a preallocated

buffer. If the specified image index exceeds the number of required or recorded images (depending

on which value is smaller), the function will return an error. If PCO_RECORDER_LATEST_IMAGE

(see chapter 2.16.1) is set as the image index, the latest image will be copied.

Make sure that the transferred buffer has always at least the size of the transferred ROI.

Since the buffer size will not be checked internally, a buffer which is too small might crash

your application.

If the recorder mode is PCO_RECORDER_MODE_MEMORY with type ring buffer (see chapter

2.7.1) and acquisition is running, it is possible that the required image will be overwritten during

the copying process. In this case, the resulting data will be unpredictable. Use the function with

care during acquisition in this state.

If the mode isPCO_RECORDER_MODE_FILE orPCO_RECORDER_MODE_CAMRAM and acquisition

is running, the function will fail for all indices except PCO_RECORDER_LATEST_IMAGE (see

chapter 2.16.1).

Supported

camera type(s)

All cameras

pco.recorder Chapter 2

pco.recorder user manual 3.6.0 30

Prototype
int WINAPI PCO_RecorderCopyImage (

HANDLE phRec, //in

HANDLE phCam, //in

DWORD dwImgIdx, //in

WORD wRoiX0, //in

WORD wRoiY0, //in

WORD wRoiX1, //in

WORD wRoiY1, //in

void* wImgBuf, //out

DWORD* dwImgNumber, //out

PCO_METADATA_STRUCT* strMetadata, //out

PCO_TIMESTAMP_STRUCT* strTimestamp //out

);

Parameter Name Type Description

phRec HANDLE HANDLE to a previously created

pco.recorder object

phCam HANDLE HANDLE to a particular camera

dwImgIdx DWORD Index of the required image

wRoiX0 WORD Left horizontal ROI (starting with 1)

wRoiY0 WORD Upper vertical ROI (starting with 1)

wRoiX1 WORD Right horizontal ROI (up to image width)

wRoiY1 WORD Lower vertical ROI (up to image height)

wImgBuf void* Pointer to the start address of the buffer the

image should be copied to

dwImgNumber DWORD* Pointer to a DWORD to get the number of the

requested image (can be set to NULL if not

relevant)

strMetadata PCO_METADATA_STRUCT* Pointer to a PCO_METADATA_STRUCT (see

pco.sdk manual) to get the current metdata

of the image if available (can be set to NULL

if not relevant)

strTimestamp PCO_TIMESTAMP_STRUCT* Pointer to a PCO_TIMESTAMP_STRUCT (see

pco.sdk manual) to get the current binary

timestamp information of the image if

timestamp is on (can be set to NULL if not

relevant)

Return value Name Type Description

ErrorMessage int 0 in case of success, Errorcode otherwise.

pco.recorder Chapter 2

pco.recorder user manual 3.6.0 31

2.18 PCO_RecorderCopyAverageImage

Description This function averages a range of images defined by a start and stop index inside a defined ROI

and copies the averaged image.

The usage of the function is very similar to PCO_RecorderCopyImage (see chapter 2.17).

Note The image number, time stamp, and metadata information is not available here.

Supported

camera type(s)

All cameras

Prototype
int WINAPI PCO_RecorderCopyAverageImage (

HANDLE phRec, //in

HANDLE phCam, //in

DWORD dwStartIdx, //in

DWORD dwStopIdx, //in

WORD wRoiX0, //in

WORD wRoiY0, //in

WORD wRoiX1, //in

WORD wRoiY1, //in

void* wImgBuf //out

);

Parameter Name Type Description

phRec HANDLE HANDLE to a previously created pco.recorder object

phCam HANDLE HANDLE to a particular camera

dwStartIdx DWORD Index of the first image that should be used for averaging

dwStopIdx DWORD Index of the last image that should be used for averaging

wRoiX0 WORD Left horizontal ROI (starting with 1)

wRoiY0 WORD Upper vertical ROI (starting with 1)

wRoiX1 WORD Right horizontal ROI (up to image width)

wRoiY1 WORD Lower vertical ROI (up to image height)

wImgBuf void* Pointer to the start address of the buffer the averaged image should

be copied to

Return value Name Type Description

ErrorMessage int 0 in case of success, Errorcode otherwise.

pco.recorder Chapter 2

pco.recorder user manual 3.6.0 32

2.19 PCO_RecorderCopyImageCompressed

Description This function copies a compressed 8 bit image using a nearly lossless compression method called

extended noise equilibration.

The usage of the function is very similar to PCO_RecorderCopyImage (see chapter 2.17)

Since the function returns an 8 bit image, you have to prepare and transfer a BYTE buffer

instead of a WORD buffer.

The compressed image you receive by using this function will be viewable directly on screen

without the need of decompression. It has a very low and brightness-independent noise level

which helps improving e.g. subsequent image analysis tasks.

For more information on the compression method please have a look at this publication:

TM - Technisches Messen (doi:10.1515/teme-2019-0022)

Note Before calling this function, you have to set the appropriate compression parameters for your

camera(s) using PCO_RecorderSetCompressionParams, otherwise the function will fail.

Supported

camera type(s)

All cameras

Prototype
int WINAPI PCO_RecorderCopyImageCompressed (

HANDLE phRec, //in

HANDLE phCam, //in

DWORD dwImgIdx, //in

WORD wRoiX0, //in

WORD wRoiY0, //in

WORD wRoiX1, //in

WORD wRoiY1, //in

BYTE* bImgBuf, //out

DWORD* dwImgNumber, //out

PCO_METADATA_STRUCT* strMetadata, //out

PCO_TIMESTAMP_STRUCT* strTimestamp //out

);

Parameter Name Type Description

phRec HANDLE HANDLE to a previously created

pco.recorder object

phCam HANDLE HANDLE to a particular camera

dwImgIdx DWORD Index of the required image

wRoiX0 WORD Left horizontal ROI (starting with 1)

wRoiY0 WORD Upper vertical ROI (starting with 1)

wRoiX1 WORD Right horizontal ROI (up to image width)

wRoiY1 WORD Lower vertical ROI (up to image height)

bImgBuf BYTE* Pointer to the start address of the buffer the

image should be copied to

Continued on next page

pco.recorder Chapter 2

pco.recorder user manual 3.6.0 33

Continued from previous page

Name Type Description

dwImgNumber DWORD* Pointer to a DWORD to get the number of the

requested image (can be set to NULL if not

relevant)

strMetadata PCO_METADATA_STRUCT* Pointer to a PCO_METADATA_STRUCT (see

pco.sdk manual) to get the current metdata

of the image if available (can be set to NULL

if not relevant)

strTimestamp PCO_TIMESTAMP_STRUCT* Pointer to a PCO_TIMESTAMP_STRUCT (see

pco.sdk manual) to get the current binary

timestamp information of the image if

timestamp is activated (can be set to NULL

if not relevant)

Return value Name Type Description

ErrorMessage int 0 in case of success, Errorcode otherwise.

2.20 PCO_RecorderExportImage

Description Export the image, defined by the transferred index, for the selected camera to the selected file

path. Allowed are only raw image formats, i.e. b16, tif, dcm

Supported

camera type(s)

All cameras

Prototype
int WINAPI PCO_RecorderExportImage (

HANDLE phRec, //in

HANDLE phCam, //in

DWORD dwImgIdx, //in

const char* szFilePath, //in

bool bOverwrite //in

);

Parameter Name Type Description

phRec HANDLE Handle to previously created recorder

phCam HANDLE Handle to particular camera

dwImgIdx DWORD Index of the image that should be read

szFilePath const char* File path (including filename and extension) where the file

should be saved

(File type is automatically detected according to the

extension)

bOverwrite bool Flag to indicate if the file, when it already exists, should be

overwritten

Return value

pco.recorder Chapter 2

pco.recorder user manual 3.6.0 34

Name Type Description

ErrorMessage int 0 in case of success, Errorcode otherwise.

pco.recorder Chapter 2

pco.recorder user manual 3.6.0 35

3 Typical Implementation

3.1 Basic Workflow

The following flowchart shows two possible basic workflows. The common elements of both

are the creation, initialization, and the start of the recording, as well as the final delete of the

pco.recorder object.

The function PCO_GetCameraHealthStatus is a standard pco.sdk function and should be called

frequently to prevent the camera from damages (see chapter 1.8).

pco.recorder Chapter 3

pco.recorder user manual 3.6.0 36

The left workflow is similar to the first example in section 3.2. It uses PCO_RecorderGetStatus

to wait for the acquisition to finish. This is a default approach for PCO_RECORDER_MODE_FILE

and PCO_RECORDER_MODE_MEMORY with type sequence (see chapter 2.7.1).

The right diagram shows an approach which is typical for PCO_RECORDER_MODE_MEMORY

with type ring buffer (see chapter 2.7.1) orPCO_RECORDER_MODE_CAMRAM. Here the number

of processed images has to be checked viaPCO_RecorderGetStatus and according to a defined

stop criterion PCO_RecorderStopRecord has to be called.

For PCO_RECORDER_MODE_MEMORY and PCO_RECORDER_MODE_FILE it would also be

possible to replacePCO_RecorderCopyImagewithPCO_RecorderGetImageAddress, but since

you are working with the internal memory of the pco.recorder here, you have to be really careful

not to cause any application crashes.

pco.recorder Chapter 3

pco.recorder user manual 3.6.0 37

3.2 Example Programs

3.2.1 Example for PCO_RECORDER_MODE_MEMORY

#include <stdio.h>

#include <tchar.h>

#include <Windows.h>

//SC2 SDK includes

#include "..\..\include\sc2_SDKStructures.h"

#include "..\..\include\sc2_common.h"

#include "..\..\include\sc2_defs.h"

#include "..\..\include\SC2_CamExport.h"

#include "..\..\include\pco_err.h"

//Recorder Includes

#include "..\..\include\PCO_Recorder_Export.h"

#include "..\..\include\PCO_Recorder_Defines.h"

#define CAMCOUNT 1

int _tmain(int argc, _TCHAR* argv[])

{

int iRet;

HANDLE hRec = NULL;

HANDLE hCamArr[CAMCOUNT];

DWORD imgDistributionArr[CAMCOUNT];

DWORD maxImgCountArr[CAMCOUNT];

DWORD reqImgCountArr[CAMCOUNT];

//Some frequently used parameters for the camera

DWORD numberOfImages = 10;

DWORD expTime = 10;

WORD expBase = TIMEBASE_MS;

WORD metaSize = 0, metaVersion = 0;

//Open camera and set to default state

PCO_OpenStruct camstruct;

memset(&camstruct, 0, sizeof(camstruct));

camstruct.wSize = sizeof(PCO_OpenStruct);

//set scanning mode

camstruct.wInterfaceType = 0xFFFF;

hCamArr[0] = 0;

//open next camera

iRet = PCO_OpenCameraEx(&hCamArr[0], &camstruct);

if (iRet != PCO_NOERROR)

{

printf("No camera found\n");

printf("Press <Enter> to end\n");

iRet = getchar();

return -1;

}

pco.recorder Chapter 3

pco.recorder user manual 3.6.0 38

//Make sure recording is off

iRet = PCO_SetRecordingState(hCamArr[0], 0);

//Do some settings

iRet = PCO_SetTimestampMode(hCamArr[0], TIMESTAMP_MODE_OFF);

iRet = PCO_SetMetaDataMode(hCamArr[0], METADATA_MODE_ON,

&metaSize, &metaVersion);

iRet = PCO_SetBitAlignment(hCamArr[0], BIT_ALIGNMENT_LSB);

//Set Exposure time

iRet = PCO_SetDelayExposureTime(hCamArr[0], 0, expTime,

2, expBase);

//Arm camera

iRet = PCO_ArmCamera(hCamArr[0]);

//Set image distribution to 1 since only one camera is used

imgDistributionArr[0] = 1;

//Reset Recorder to make sure a no previous instance is running

iRet = PCO_RecorderResetLib(false);

//Create Recorder (mode: memory sequence)

WORD mode = PCO_RECORDER_MODE_MEMORY;

iRet = PCO_RecorderCreate(&hRec, hCamArr, imgDistributionArr,

CAMCOUNT, mode, 'C', maxImgCountArr);

//Set required images

reqImgCountArr[0] = numberOfImages;

if (reqImgCountArr[0] > maxImgCountArr[0])

reqImgCountArr[0] = maxImgCountArr[0];

//Init Recorder

iRet = PCO_RecorderInit(hRec, reqImgCountArr, CAMCOUNT,

PCO_RECORDER_MEMORY_SEQUENCE, 0, NULL, NULL);

//Get image size

WORD imgWidth = 0, imgHeight = 0;

iRet = PCO_RecorderGetSettings(hRec, hCamArr[0], NULL, NULL,

NULL, &imgWidth, &imgHeight, NULL);

//Start camera

iRet = PCO_RecorderStartRecord(hRec, NULL);

//Wait until acquisition is finished

//(all other parameters are ignored)

bool acquisitionRunning = true;

while (acquisitionRunning)

{

iRet = PCO_RecorderGetStatus(hRec, hCamArr[0],

&acquisitionRunning,

NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL);

DWORD warn = 0, err = 0, status = 0;

iRet = PCO_GetCameraHealthStatus(hCamArr[0],

&warn, &err, &status);

if (err != PCO_NOERROR) //Stop record on health error

PCO_RecorderStopRecord(hRec, hCamArr[0]);

pco.recorder Chapter 3

pco.recorder user manual 3.6.0 39

Sleep(100);

}

//Allocate memory for one image

WORD* imgBuffer = NULL;

imgBuffer = new WORD[(__int64)imgWidth * (__int64)imgHeight];

//Get number of finally recorded images

DWORD procImgCount = 0;

iRet = PCO_RecorderGetStatus(hRec, hCamArr[0], NULL, NULL, NULL,

&procImgCount, NULL, NULL, NULL, NULL, NULL);

//

//TODO: Process, Save or analyze the image(s)

//Here we just read, print image counter and save one tif file

//

//Get the images and print image counter

PCO_METADATA_STRUCT metadata;

metadata.wSize = sizeof(PCO_METADATA_STRUCT);

bool imageSaved = false;

DWORD imgNumber = 0;

for (DWORD i = 0; i < procImgCount; i++)

{

iRet = PCO_RecorderCopyImage(hRec, hCamArr[0], i,

1, 1, imgWidth, imgHeight, imgBuffer,

&imgNumber, &metadata, NULL);

if (iRet == PCO_NOERROR)

{

printf("Image Number: %lu \n", imgNumber);

//Save first image as tiff in the binary folder

//just to have some output

if (!imageSaved)

{

iRet = PCO_RecorderSaveImage(imgBuffer,

imgWidth, imgHeight, FILESAVE_IMAGE_BW_16,

false, "test.tif", true, &metadata);

if (iRet == PCO_NOERROR)

imageSaved = true;

}

}

}

delete[] imgBuffer;

//Delete Recorder

iRet = PCO_RecorderDelete(hRec);

//Close camera

iRet = PCO_CloseCamera(hCamArr[0]);

return 0;

}

pco.recorder Chapter 3

pco.recorder user manual 3.6.0 40

3.2.2 Example for PCO_RECORDER_MODE_CAMRAM

#include <stdio.h>

#include <tchar.h>

#include <Windows.h>

//SC2 SDK includes

#include "..\..\include\sc2_SDKStructures.h"

#include "..\..\include\sc2_common.h"

#include "..\..\include\sc2_defs.h"

#include "..\..\include\SC2_CamExport.h"

#include "..\..\include\pco_err.h"

//Recorder Includes

#include "..\..\include\PCO_Recorder_Export.h"

#include "..\..\include\PCO_Recorder_Defines.h"

#define CAMCOUNT 1

int _tmain(int argc, _TCHAR* argv[])

{

int iRet;

HANDLE hRec = NULL;

HANDLE hCamArr[CAMCOUNT];

DWORD imgDistributionArr[CAMCOUNT];

DWORD maxImgCountArr[CAMCOUNT];

DWORD reqImgCountArr[CAMCOUNT];

DWORD procImgCount;

WORD ramSegment = 1;

//Some frequently used parameters for the camera

DWORD numberOfImages = 10;

DWORD expTime = 100;

WORD expBase = TIMEBASE_US;

WORD metaSize = 0, metaVersion = 0;

//Open camera and set to default state

PCO_OpenStruct camstruct;

memset(&camstruct, 0, sizeof(camstruct));

camstruct.wSize = sizeof(PCO_OpenStruct);

//set scanning mode

camstruct.wInterfaceType = 0xFFFF;

hCamArr[0] = 0;

//open next camera

iRet = PCO_OpenCameraEx(&hCamArr[0], &camstruct);

if (iRet != PCO_NOERROR)

{

printf("No camera found\n");

printf("Press <Enter> to end\n");

iRet = getchar();

return -1;

}

pco.recorder Chapter 3

pco.recorder user manual 3.6.0 41

//Make sure recording is off

iRet = PCO_SetRecordingState(hCamArr[0], 0);

//switch to sequence mode

iRet = PCO_SetRecorderSubmode(hCamArr[0], 1);

//Do some settings

iRet = PCO_SetTimestampMode(hCamArr[0], TIMESTAMP_MODE_OFF);

iRet = PCO_SetMetaDataMode(hCamArr[0], METADATA_MODE_ON,

&metaSize, &metaVersion);

iRet = PCO_SetBitAlignment(hCamArr[0], BIT_ALIGNMENT_LSB);

//Set Exposure time

iRet = PCO_SetDelayExposureTime(hCamArr[0], 0, expTime,

2, expBase);

//Arm camera

iRet = PCO_ArmCamera(hCamArr[0]);

//Set image distribution to 1 since only one camera is used

imgDistributionArr[0] = 1;

//Reset Recorder to make sure a no previous instance is running

iRet = PCO_RecorderResetLib(false);

//Create Recorder (mode: cam ram)

WORD mode = PCO_RECORDER_MODE_MEMORY;

iRet = PCO_RecorderCreate(&hRec, hCamArr, imgDistributionArr,

CAMCOUNT, mode, 'C', maxImgCountArr);

//Set required images

reqImgCountArr[0] = numberOfImages;

if (reqImgCountArr[0] > maxImgCountArr[0])

reqImgCountArr[0] = maxImgCountArr[0];

//Init Recorder for segment 1 as example, for sequential readout

iRet = PCO_RecorderInit(hRec, reqImgCountArr, CAMCOUNT,

PCO_RECORDER_CAMRAM_SEQUENTIAL, 0, NULL, &ramSegment);

//Get number of images already in cameras internal memory

iRet = PCO_RecorderGetStatus(hRec, hCamArr[0], NULL, NULL, NULL,

&procImgCount, NULL, NULL, NULL, NULL, NULL);

//Get width and height to allocate memory

WORD imgWidth = 0, imgHeight = 0;

iRet = PCO_RecorderGetSettings(hRec, hCamArr[0], NULL,

&maxImgCountArr[0], NULL, &imgWidth, &imgHeight, NULL);

//Allocate memory for image

WORD* imgBuffer = NULL;

imgBuffer = new WORD[(__int64)imgWidth * (__int64)imgHeight];

if (procImgCount > 0)

{

//If there are already images in the ram segment,

//you can read them without any previous recording

// Note: CopyImage is indexed based, so this starts with 0

iRet = PCO_RecorderCopyImage(hRec, hCamArr[0], 0,

1, 1, imgWidth, imgHeight, imgBuffer, NULL, NULL, NULL);

pco.recorder Chapter 3

pco.recorder user manual 3.6.0 42

//

//TODO: Process, Save or analyze the image(s)

//

}

//Start camera

iRet = PCO_RecorderStartRecord(hRec, NULL);

//Wait as long as you want (i.e. for some external event)

int waitTime = 0;

while (waitTime < 10)

{

//If required you can get a live stream during record

//(only PCO_RECORDER_LATEST_IMAGE is allowed during record)

iRet = PCO_RecorderCopyImage(hRec, hCamArr[0],

PCO_RECORDER_LATEST_IMAGE,

1, 1, imgWidth, imgHeight, imgBuffer, NULL, NULL, NULL);

waitTime++;

}

//Stop record

iRet = PCO_RecorderStopRecord(hRec, hCamArr[0]);

//Get number of finally recorded images

iRet = PCO_RecorderGetStatus(hRec, hCamArr[0], NULL, NULL, NULL,

&procImgCount, NULL, NULL, NULL, NULL, NULL);

//

//TODO: Process, Save or analyze the image(s)

// Here we just read, print image counter and save one tif file

//

PCO_METADATA_STRUCT metadata;

metadata.wSize = sizeof(PCO_METADATA_STRUCT);

DWORD imgNumber = 0;

bool imageSaved = false;

//Get the first "numberOfImages" images from

//the cameras internal memory

for (int i = 0; i < (int)numberOfImages; i++)

{

//Copy the image at index 5 into the buffer

iRet = PCO_RecorderCopyImage(hRec, hCamArr[0], i,

1, 1, imgWidth, imgHeight,

imgBuffer, &imgNumber, &metadata, NULL);

if (iRet == PCO_NOERROR)

{

printf("Image Number: %lu \n", imgNumber);

//Save first image as tiff in the binary folder

//just to have some output

if (!imageSaved)

{

iRet = PCO_RecorderSaveImage(imgBuffer,

imgWidth, imgHeight, FILESAVE_IMAGE_BW_16,

false,"test.tif", true, &metadata);

pco.recorder Chapter 3

pco.recorder user manual 3.6.0 43

if (iRet == PCO_NOERROR)

imageSaved = true;

}

}

}

delete[] imgBuffer;

//Delete Recorder

iRet = PCO_RecorderDelete(hRec);

//Close camera

iRet = PCO_CloseCamera(hCamArr[0]);

return 0;

}

3.2.3 Example for PCO_RECORDER_MODE_FILE

Similar to PCO_RECORDER_MODE_MEMORY (chapter 3.2.1)

pco.recorder Chapter 3

pco.recorder user manual 3.6.0 44

4 About Excelitas PCO

Pioneering in Cameras and Optoelectronics (PCO) has been our shared philosophy since our

establishment in 1987. Starting with image-intensified cameras, followed by the co-invention of

the groundbreaking sCMOS sensor technology, PCO greatly surpassed the imaging performance

standards of the day. Acquired by Excelitas in 2021, our PCO camera portfolio continues to forge

ahead as a leader in digital imaging innovation across diverse applications such as scientific and

industrial research, automotive testing, quality control, and metrology.

With sophisticated mechanical design, extensive software support, and a broad range of accessories,

we deliver adaptable solutions for all demands. This adaptability extends to tailor-made firmware

and custom image sensors, which allow us to develop highly specialized solutions for all our

customers. PCO represents a world-renowned brand of high-performance camera systems that

complement Excelitas’ expansive range of illumination, optical, and sensor technologies and extend

the bounds of our end-to-end photonic solutions capabilities.

Our comprehensive camera portfolio covers the entire spectrum - from deep ultraviolet (DUV) to

shortwave infrared (SWIR), from long exposure to high-speed, from line scan to high-resolution

area scan. Our camera systems are controlled and processed through an intuitive and powerful

software suite addressing an extensive range of platforms and architectures.

pco.recorder Chapter 4

pco.recorder user manual 3.6.0 45

address:

phone:

mail:

web:

Excelitas PCO GmbH
Donaupark 11
93309 Kelheim, Germany

(+49) 9441-2005-0
(+1) 86-662-6653
(+86) 0512-6763-4643

pco@excelitas.com

www.excelitas.com/pco

excelitas.com

	General
	Overview
	Conventions
	Recorder Modes
	Typical pco.recorder workflow
	Running Applications
	Compiling and Linking
	pco.recorder Logging
	Camera Health Status
	Change Frame Rate or Exposure Time

	API Function Description
	PCO_RecorderGetVersion
	PCO_RecorderSaveImage
	File Types

	PCO_RecorderSaveOverlay
	PCO_RecorderResetLib
	PCO_RecorderCreate
	Recorder Modes

	PCO_RecorderDelete
	PCO_RecorderInit
	Recorder Types

	PCO_RecorderCleanup
	PCO_RecorderGetSettings
	PCO_RecorderStartRecord
	PCO_RecorderStopRecord
	PCO_RecorderSetAutoExposure
	PCO_RecorderSetAutoExpRegions
	Region Types

	PCO_RecorderSetCompressionParams
	PCO_Recorder_CompressionParams Structure

	PCO_RecorderGetStatus
	PCO_RecorderGetImageAddress
	Image Readout

	PCO_RecorderCopyImage
	PCO_RecorderCopyAverageImage
	PCO_RecorderCopyImageCompressed
	PCO_RecorderExportImage

	Typical Implementation
	Basic Workflow
	Example Programs
	Example for PCO_RECORDER_MODE_MEMORY
	Example for PCO_RECORDER_MODE_CAMRAM
	Example for PCO_RECORDER_MODE_FILE

	About Excelitas PCO

